The influence of water sorption-desorption cycles on the mechanical properties of composites based on recycled polyolefine and linen yarn production waste

2007 ◽  
Vol 43 (6) ◽  
pp. 573-578 ◽  
Author(s):  
G. Bakradze ◽  
J. Kajaks ◽  
S. Reihmane ◽  
R. Krutohvostov ◽  
V. Bulmanis
2014 ◽  
Vol 72 (8) ◽  
pp. 859-865 ◽  
Author(s):  
Ippei Hamanaka ◽  
Misa Iwamoto ◽  
Lippo Lassila ◽  
Pekka Vallittu ◽  
Hiroshi Shimizu ◽  
...  

2017 ◽  
Vol 5 (2) ◽  
pp. 20-30
Author(s):  
Zaman Khalil Ibrahim

In this research aluminum matrix composites (AMCs) was reinforced by titanium carbide (TiC) particles and was produced. Powder metallurgy technique (PM) has been used to fabricate AMCs reinforced with various amounts (0%, 4%, 8%, 12%, 16% and 20% volume fraction) of TiC particles to study the effect of different volume fractions on mechanical properties of the Al-TiC composites. Measurements of compression strength and hardness showed that mechanical properties of composites increased with an increase in volume fraction of TiC Particles. Al-20 % vol. TiC composites exhibited the best properties with hardness value (97HRB) and compression strength value (275Mpa).


Author(s):  
D. C. Gornig ◽  
R. Maletz ◽  
P. Ottl ◽  
M. Warkentin

Abstract Objective The aim of the study was to evaluate the influence of filler content, degradation media and time on the mechanical properties of different dental composites after in vitro aging. Materials and Methods Specimens (1 mm3) of three commercially available composites (GrandioSO®, Arabesk Top®, Arabesk Flow®) with respect to their filler content were stored in artificial aging media: artificial saliva, ethanol (60%), lactic acid (pH 5) and citric acid (pH 5). Parameters (Vickers microhardness, compressive strength, elastic modulus, water sorption and solubility) were determined in their initial state (control group, n = 3 for microhardness, n = 5 for the other parameters) and after 14, 30, 90 and 180 days (n = 3 for microhardness, n = 5 for the other parameters for each composite group, time point and media). Specimens were also characterized with dynamic-mechanical-thermal analysis (compression tests, F =  ± 7 N; f = 0.5 Hz, 1 Hz and 3.3 Hz; t = 0–170 °C). Results Incorporation of fillers with more than 80 w% leads to significantly better mechanical properties under static and dynamic compression tests and a better water sorption behavior, even after chemical degradation. The influence of degradation media and time is of subordinate importance for chemical degradation. Conclusion Although the investigated composites have a similar matrix, they showed different degradation behavior. Since dentine and enamel occur only in small layer thickness, a test specimen geometry with very small dimensions is recommended for direct comparison. Moreover, the use of compression tests to determine the mechanical parameters for the development of structure-compatible and functionally adapted composites makes sense as an additional standard. Clinical relevance Preferential use of highly filled composites for occlusal fillings is recommended.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1745
Author(s):  
Tamaki Hada ◽  
Manabu Kanazawa ◽  
Maiko Iwaki ◽  
Awutsadaporn Katheng ◽  
Shunsuke Minakuchi

In this study, the physical properties of a custom block manufactured using a self-polymerizing resin (Custom-block), the commercially available CAD/CAM PMMA disk (PMMA-disk), and a heat-polymerizing resin (Conventional PMMA) were evaluated via three different tests. The Custom-block was polymerized by pouring the self-polymerizing resin into a special tray, and Conventional PMMA was polymerized with a heat-curing method, according to the manufacturer’s recommended procedure. The specimens of each group were subjected to three-point bending, water sorption and solubility, and staining tests. The results showed that the materials met the requirements of the ISO standards in all tests, except for the staining tests. The highest flexural strength was exhibited by the PMMA-disk, followed by the Custom-block and the Conventional PMMA, and a significant difference was observed in the flexural strengths of all the materials (p < 0.001). The Custom-block showed a significantly higher flexural modulus and water solubility. The water sorption and discoloration of the Custom-block were significantly higher than those of the PMMA-disk, but not significantly different from those of the Conventional PMMA. In conclusion, the mechanical properties of the three materials differed depending on the manufacturing method, which considerably affected their flexural strength, flexural modulus, water sorption and solubility, and discoloration.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 94
Author(s):  
Petar Janjatovic ◽  
Olivera Eric Cekic ◽  
Leposava Sidjanin ◽  
Sebastian Balos ◽  
Miroslav Dramicanin ◽  
...  

Austempered ductile iron (ADI) is an advanced cast iron material that has a broad field of application and, among others, it is used in contact and for conveyance of fluids. However, it is noticed that in contact with some fluids, especially water, ADI material becomes brittle. The most significant decrease is established for the elongation. However, the influence of water and the cause of this phenomenon is still not fully understood. For that reason, in this paper, the influence of different water concentrations in ethyl alcohol on the mechanical properties of ADI materials was studied. The test was performed on two different types of ADI materials in 0.2, 4, 10, and 100 vol.% water concentration environments, and in dry condition. It was found that even the smallest concentration of water (0.2 vol.%) causes formation of the embrittled zone at fracture surface. However, not all mechanical properties were affected equally and not all water concentrations have been critical. The highest deterioration was established in the elongation, followed by the ultimate tensile strength, while the proof strength was affected least.


Sign in / Sign up

Export Citation Format

Share Document