Picea wilsonii transcription factor NAC2 enhanced plant tolerance to abiotic stress and participated in RFCP1-regulated flowering time

2018 ◽  
Vol 98 (6) ◽  
pp. 471-493 ◽  
Author(s):  
Hehua Zhang ◽  
Xiaoyue Cui ◽  
Yuxiao Guo ◽  
Chaobing Luo ◽  
Lingyun Zhang
Author(s):  
Aimin Lv ◽  
Liantai Su ◽  
Wuwu Wen ◽  
Nana Fan ◽  
Peng Zhou ◽  
...  

Abstract A novel late embryogenesis abundant (LEA) gene, MsLEA-D34, was cloned from alfalfa (Medicago sativa L.). Its function and gene regulatory pathways were studied via overexpression and RNAi of the gene in Arabidopsis and hairy roots of alfalfa, as well as via analyzing key genes related to MsLEA-D34 during developmental phases of alfalfa. The results showed that MsLEA-D34 was a typical intrinsically disordered protein with high ability of protein protection. Overexpression of MsLEA-D34 increased plant tolerance to osmotic and salt stresses, and caused Arabidopsis early flowering under drought and well water conditions. Overexpressing MsLEA-D34 (OE-MsLEA-D34) induced up-regulation of FLOWERING LOCUS T (FT) and GIGANTEA (GI) at flowering phase of Arabidopsis was clearly observed in MsLEA-D34-OE hairy roots of alfalfa, but only FT downregulated in MsLEA-D34-RNAi lines. A positive effect of MsLEA-D34 on FT accumulation was demonstrated in alfalfa hairy roots. Abscisic acid (ABA)-responsive element (ABRE)-binding transcription factor (MsABF2), a novel transcription factor cloned from alfalfa, directly bound to RY element in MsLEA-D34 promoter and activated MsLEA-D34 expression. The above results indicate that MsLEA-D34 can regulate abiotic stress response in plants and influence flowering time of Arabidopsis.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yuxin Yang ◽  
Xueying Zhang ◽  
Lifen Wu ◽  
Lichao Zhang ◽  
Guoxiang Liu ◽  
...  

Abstract Background Wheat is one of the most widely planted crops worldwide. The heading date is important for wheat environmental adaptability, as it not only controls flowering time but also determines the yield component in terms of grain number per spike. Results In this research, homozygous genotypes with early and late heading dates derived from backcrossed progeny were selected to conduct RNA-Seq analysis at the double ridge stage (W2.0) and androgynous primordium differentiation stage (W3.5) of the leaf and apical meristem, respectively. In total, 18,352 differentially expressed genes (DEGs) were identified, many of which are strongly associated with wheat heading date genes. Gene Ontology (GO) enrichment analysis revealed that carbohydrate metabolism, trehalose metabolic process, photosynthesis, and light reaction are closely related to the flowering time regulation pathway. Based on MapMan metabolic analysis, the DEGs are mainly involved in the light reaction, hormone signaling, lipid metabolism, secondary metabolism, and nucleotide synthesis. In addition, 1,225 DEGs were annotated to 45 transcription factor gene families, including LFY, SBP, and MADS-box transcription factors closely related to flowering time. Weighted gene co-expression network analysis (WGCNA) showed that 16, 336, 446, and 124 DEGs have biological connections with Vrn1-5 A, Vrn3-7B, Ppd-1D, and WSOC1, respectively. Furthermore, TraesCS2D02G181400 encodes a MADS-MIKC transcription factor and is co-expressed with Vrn1-5 A, which indicates that this gene may be related to flowering time. Conclusions RNA-Seq analysis provided transcriptome data for the wheat heading date at key flower development stages of double ridge (W2.0) and androgynous primordium differentiation (W3.5). Based on the DEGs identified, co-expression networks of key flowering time genes in Vrn1-5 A, Vrn3-7B, WSOC1, and Ppd-1D were established. Moreover, we discovered a potential candidate flowering time gene, TraesCS2D02G181400. Taken together, these results serve as a foundation for further study on the regulatory mechanism of the wheat heading date.


2020 ◽  
Vol 21 (6) ◽  
pp. 2177 ◽  
Author(s):  
Bo Li ◽  
Jia-Cheng Zheng ◽  
Ting-Ting Wang ◽  
Dong-Hong Min ◽  
Wen-Liang Wei ◽  
...  

Vascular plant one-zinc-finger (VOZ) transcription factor, a plant specific one-zinc-finger-type transcriptional activator, is involved in regulating numerous biological processes such as floral induction and development, defense against pathogens, and response to multiple types of abiotic stress. Six VOZ transcription factor-encoding genes (GmVOZs) have been reported to exist in the soybean (Glycine max) genome. In spite of this, little information is currently available regarding GmVOZs. In this study, GmVOZs were cloned and characterized. GmVOZ genes encode proteins possessing transcriptional activation activity in yeast cells. GmVOZ1E, GmVOZ2B, and GmVOZ2D gene products were widely dispersed in the cytosol, while GmVOZ1G was primarily located in the nucleus. GmVOZs displayed a differential expression profile under dehydration, salt, and salicylic acid (SA) stress conditions. Among them, GmVOZ1G showed a significantly induced expression in response to all stress treatments. Overexpression of GmVOZ1G in soybean hairy roots resulted in a greater tolerance to drought and salt stress. In contrast, RNA interference (RNAi) soybean hairy roots suppressing GmVOZ1G were more sensitive to both of these stresses. Under drought treatment, soybean composite plants with an overexpression of hairy roots had higher relative water content (RWC). In response to drought and salt stress, lower malondialdehyde (MDA) accumulation and higher peroxidase (POD) and superoxide dismutase (SOD) activities were observed in soybean composite seedlings with an overexpression of hairy roots. The opposite results for each physiological parameter were obtained in RNAi lines. In conclusion, GmVOZ1G positively regulates drought and salt stress tolerance in soybean hairy roots. Our results will be valuable for the functional characterization of soybean VOZ transcription factors under abiotic stress.


2021 ◽  
Author(s):  
Fang Wang ◽  
Peng Fang ◽  
Huiping Yan ◽  
Xiangzhuo Ji ◽  
Yunling Peng

Abstract The homeodomain leucine zipper (HD-Zip) IV transcription factor is indispensable in the response of plants to abiotic stress. Systematic studies have been carried out in Arabidopsis, rice and other species from which a series of stress resistance-related genes have been isolated. However, the function of the HD-Zip-IV protein in maize is not clear. In this study, we cloned the HD-Zip-IV gene ZmHDZIV13 and identified its function in the stress response. Our phylogenetic analysis showed that ZmHDZIV13 and AtHDG11 had high homology and might have similar functions. The heterologous overexpression of ZmHDZIV13 in Arabidopsis resulted in sensitivity to abscisic acid (ABA), salt tolerance during germination and drought tolerance in seedlings. Under drought stress, the transgenic Arabidopsis showed stronger drought resistance than the wild-type showed (control). The malondialdehyde content of ZmHDZIV13 transgenic plants was lower than that of the control, and the relative water content and proline content were significantly higher than those of the control. After the drought was relieved, the expression of P5CS1, RD22, RD29B, RD29A, NCED3 and ERD1 were upregulated in transgenic Arabidopsis. Also, modified tobacco plants (35S::ZmHDZIV13) exhibited proper stomatal changes in response to drought conditions. These results show that ZmHDZIV13, as a stress-responsive transcription factor, plays a role in the positive regulation of abiotic stress tolerance and can regulate an ABA-dependent signaling pathway to regulate drought response in plants.


2015 ◽  
Vol 35 (3) ◽  
pp. 655-666 ◽  
Author(s):  
Yangyang Yuan ◽  
Linchuan Fang ◽  
Sospeter Karanja Karungo ◽  
Langlang Zhang ◽  
Yingying Gao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document