scholarly journals The phosphorylated pathway of serine biosynthesis is crucial for indolic glucosinolate biosynthesis and plant growth promotion conferred by the root endophyte Colletotrichum tofieldiae

Author(s):  
Sandra E. Zimmermann ◽  
Samira Blau ◽  
Henning Frerigmann ◽  
Stephan Krueger

Abstract Key message Phosphoglycerate Dehydrogenase 1 of the phosphorylated pathway of serine biosynthesis, active in heterotrophic plastids, is required for the synthesis of serine to enable plant growth at high rates of indolic glucosinolate biosynthesis. Abstract Plants have evolved effective strategies to defend against various types of pathogens. The synthesis of a multitude of specialized metabolites represents one effective approach to keep plant attackers in check. The synthesis of those defense compounds is cost intensive and requires extensive interaction with primary metabolism. However, how primary metabolism is adjusted to fulfill the requirements of specialized metabolism is still not completely resolved. Here, we studied the role of the phosphorylated pathway of serine biosynthesis (PPSB) for the synthesis of glucosinolates, the main class of defensive compounds in the model plant Arabidopsis thaliana. We show that major genes of the PPSB are co-expressed with genes required for the synthesis of tryptophan, the unique precursor for the formation of indolic glucosinolates (IG). Transcriptional and metabolic characterization of loss-of-function and dominant mutants of ALTERED TRYPTOPHAN1-like transcription factors revealed demand driven activation of PPSB genes by major regulators of IG biosynthesis. Trans-activation of PPSB promoters by ATR1/MYB34 transcription factor in cultured root cells confirmed this finding. The content of IGs were significantly reduced in plants compromised in the PPSB and these plants showed higher sensitivity against treatment with 5-methyl-tryptophan, a characteristic behavior of mutants impaired in IG biosynthesis. We further found that serine produced by the PPSB is required to enable plant growth under conditions of high demand for IG. In addition, PPSB-deficient plants lack the growth promoting effect resulting from interaction with the beneficial root-colonizing fungus Colletotrichum tofieldiae.

Author(s):  
Zhao L ◽  
◽  
Zhao W ◽  
Deng H ◽  
◽  
...  

Some fungi may promote plant growth by production of siderophores, Indole Acetic Acid (IAA) and phosphorus dissolving capability. In this study, eight fungi were isolated from the mushroom substrate, and their siderophores production, IAA production and phosphorus dissolving traits were determined. Although there was no significant difference in IAA production among the eight fungi, but the strain M13026-2 was a fungus with strong growth promoting traits compared with other seven fungi. In order to study the correlation between the growth promoting effect of cucumber pot culture and the above three traits, five fungi with different strength of traits were tested in pot. As a result, M13026- 2 which was identified as Talaromyces purpureogenus could significantly improve the growth parameters of cucumber seedlings, and could colonize in the rhizosphere soil and the tissue of cucumber stably. All the results suggested that the most relevant to their ability to promote plant growth is the trait of phosphorus dissolving, followed by siderophores production. The results of this study will provide scientific basis for the efficient selection and identification of a large number of fungi resources with the function of promoting plant growth, and reveal the good application potential of T. purpureogenus in agriculture fields.


2021 ◽  
Vol 12 ◽  
Author(s):  
Dominique Comeau ◽  
Carole Balthazar ◽  
Amy Novinscak ◽  
Nadia Bouhamdani ◽  
David L. Joly ◽  
...  

Plant growth-promoting rhizobacteria (PGPR) deploy several mechanisms to improve plant health, growth and yield. The aim of this study was to evaluate the efficacy of two Pseudomonas spp. strains and three Bacillus spp. strains used as single treatments and in consortia to improve the yield of Cannabis sativa and characterize the impact of these treatments on the diversity, structure and functions of the rhizosphere microbiome. Herein, we demonstrate a significant C. sativa yield increase up to 70% when inoculated with three different Pseudomonas spp./Bacillus spp. consortia but not with single inoculation treatments. This growth-promoting effect was observed in two different commercial soil substrates commonly used to grow cannabis: Promix and Canna coco. Marker-based genomic analysis highlighted Bacillus spp. as the main modulator of the rhizosphere microbiome diversity and Pseudomonas spp. as being strongly associated with plant growth promotion. We describe an increase abundance of predicted PGPR metabolic pathways linked with growth-promoting interactions in C. sativa.


2019 ◽  
Vol 116 (31) ◽  
pp. 15735-15744 ◽  
Author(s):  
Anna Koprivova ◽  
Stefan Schuck ◽  
Richard P. Jacoby ◽  
Irene Klinkhammer ◽  
Bastian Welter ◽  
...  

Plants in their natural ecosystems interact with numerous microorganisms, but how they influence their microbiota is still elusive. We observed that sulfatase activity in soil, which can be used as a measure of rhizosphere microbial activity, is differently affected by Arabidopsis accessions. Following a genome-wide association analysis of the variation in sulfatase activity we identified a candidate gene encoding an uncharacterized cytochrome P450, CYP71A27. Loss of this gene resulted in 2 different and independent microbiota-specific phenotypes: A lower sulfatase activity in the rhizosphere and a loss of plant growth-promoting effect by Pseudomonas sp. CH267. On the other hand, tolerance to leaf pathogens was not affected, which agreed with prevalent expression of CYP71A27 in the root vasculature. The phenotypes of cyp71A27 mutant were similar to those of cyp71A12 and cyp71A13, known mutants in synthesis of camalexin, a sulfur-containing indolic defense compound. Indeed, the cyp71A27 mutant accumulated less camalexin in the roots upon elicitation with silver nitrate or flagellin. Importantly, addition of camalexin complemented both the sulfatase activity and the loss of plant growth promotion by Pseudomonas sp. CH267. Two alleles of CYP71A27 were identified among Arabidopsis accessions, differing by a substitution of Glu373 by Gln, which correlated with the ability to induce camalexin synthesis and to gain fresh weight in response to Pseudomonas sp. CH267. Thus, CYP71A27 is an additional component in the camalexin synthesis pathway, contributing specifically to the control of plant microbe interactions in the root.


2014 ◽  
Vol 27 (7) ◽  
pp. 655-663 ◽  
Author(s):  
Shan-Shan Xie ◽  
Hui-Jun Wu ◽  
Hao-Yu Zang ◽  
Li-Ming Wu ◽  
Qing-Qing Zhu ◽  
...  

The interaction between plants and plant-growth-promoting rhizobacteria (PGPR) is a complex, reciprocal process. On the one hand, plant compounds such as carbohydrates and amino acids serve as energy sources for PGPR. On the other hand, PGPR promote plant growth by synthesizing plant hormones and increasing mineral availability in the soil. Here, we evaluated the growth-promoting activity of Bacillus subtilis OKB105 and identified genes associated with this activity. The genes yecA (encoding a putative amino acid/polyamine permease) and speB (encoding agmatinase) are involved in the secretion or synthesis of polyamine in B. subtilis OKB105. Disruption of either gene abolished the growth-promoting activity of the bacterium, which was restored when polyamine synthesis was complemented. Moreover, high-performance liquid chromatography analysis of culture filtrates of OKB105 and its derivatives demonstrated that spermidine, a common polyamine, is the pivotal plant-growth-promoting compound. In addition, real-time polymerase chain reaction analysis revealed that treatment with B. subtilis OKB105 induced expansin gene (Nt-EXPA1 and Nt-EXPA2) expression and inhibited the expression of the ethylene biosynthesis gene ACO1. Furthermore, enzyme-linked immunosorbent assay analysis showed that the ethylene content in plant root cells decreased in response to spermidine produced by OKB105. Therefore, during plant interactions, OKB105 may produce and secrete spermidine, which induces expansin production and lowers ethylene levels.


2017 ◽  
Vol 57 (2) ◽  
pp. 144-151 ◽  
Author(s):  
Arun Karnwal

AbstractThe use of plant growth promoting rhizobacteria is increasing in agriculture and gives an appealing manner to replace chemical fertilizers, pesticides, and dietary supplements. The objective of our research was to access the plant growth promotion traits ofPseudomonas aeruginosa,P. fluorescensandBacillus subtilisisolated from the maize (Zea maysL.) rhizosphere.In vitrostudies showed that isolates have the potential to produce indole acetic acid (IAA), hydrogen cyanide, phosphate solubilisation, and siderophore. RNA analysis revealed that two isolates were 97% identical toP. aeruginosastrain DSM 50071 andP. aeruginosastrain NBRC 12689 (AK20 and AK31), while two others were 98% identical toP. fluorescensstrain ATCC 13525,P. fluorescensstrain IAM 12022 (AK18 and AK45) and one other was 99% identical toB. subtilisstrain NCDO 1769 (AK38). Our gnotobiotic study showed significant differences in plant growth variables under control and inoculated conditions. In the present research, it was observed that the isolated strains had good plant growth promoting effects on rice.


2019 ◽  
Author(s):  
G. Praveen Kumar ◽  
Suseelendra Desai ◽  
Bruno M. Moerschbacher ◽  
Nour Eddine-El Gueddari

AbstractInoculation of crop plants with PGPR has in a large number of investigations resulted in increased plant growth and yield both in the greenhouse and in the field. This plant growth promoting effect of bacteria could be due to net result of synergistic effect of various pgpr traits that they exert in the rhizosphere region of the plant. Four (04) bacterial strain of fluorescent Pseudomonas spp. viz. P1, P17, P22 and P28 were identified previously for their plant growth promoting nature and abiotic stress tolerance and selected further to assess their chitinolytic activity and growth promotion on sorghum in combination with chitosans of low and high degree of acetylation. It was found that P1 has no chitin degrading nature and rest of the three strains have this property. When studied for their ability to grow in presence of chitosans of DA 1.6, 11, 35 and 56% all the strains showed growth in presence of chitosans. Seed bacterization of sorghum seeds with 04 bacterial strains in the presence and absence of chitosans (both low and high DA) and assessment of plant growth promotion after 15 days of sowing showed that P17+DA 56% chitosan combination showed higher growth of seedlings in plant growth chamber with highest root length of 25.9 cm, highest shoot length of 32.1 cm and dry mass of 132.7 mg/ plant. In P17+DA 56% chitosan treated seedlings various defence enzymes and PR-proteins were found to be present in highest quantities as compared to P1 and un-inoculated controls. Since this strain showed highest growth promotion of sorghum seedlings chitin-chitosan modifying enzyme (CCME) of this strain was partially characterized using different proteomic tools and techniques. CCME of P17 had one active polypeptide with a Pi in the range of 3.0-4.0. The digestion pattern of acetylated and deacetylated chitosans showed that P17 enzyme has endochitinase activity. Substrate specificity assay showed that the enzyme had more specificity towards highly acetylated chitosans. Two dimensional PAGE and MS analysis of the protein revealed similarities of this enzyme with protein of Pseudomonas aeruginosa chitinase PA01 strain of GenBank. In conclusion, the study established the option of opening new possibilities for developing bacterial-chitosan (P17+DA 56% chitosan) product for plant growth promotion and induced systemic resistance in sorghum.


Author(s):  
Bradley R. Dotson ◽  
Vasiliki Verschut ◽  
Klas Flärdh ◽  
Paul G. Becher ◽  
Allan G. Rasmusson

AbstractPlants enhance their growth in the presence of particular soil bacteria due to volatile compounds affecting the homeostasis of plant growth hormones. However, the mechanisms of volatile compound signaling and plant perception has been unclear. This study identifies the bioactive volatile 3-octanone as a plant growth stimulating volatile, constitutively emitted by the soil bacterium Streptomyces coelicolor grown on a rich medium. When 3-octanone is applied to developing Arabidopsis thaliana seedlings, a family-wide induction of the Kelch-repeat F-box genes known as KISS ME DEADLY (KMD) subsequently alters auxin/cytokinin homeostasis to promote the growth of lateral roots and inhibit the primary root. Loss of function of the KMD family or other alterations of auxin/cytokinin homeostasis suppresses the volatile-induced growth response. This reveals a function of KMDs in the pathway of microbial volatile perception and plant growth responses.Significance StatementVolatiles from soil microbes are profound stimulators of plant growth. This work identifies for the first time a plant hormone signaling regulator, the gene family KISS ME DEADLY (KMD), to be an early essential step in plant growth promotion by a soil bacterial volatile, 3-octanone. The KMD-regulated gene network alters the tissue sensitivity balance for the growth hormones auxin and cytokinin, modifying root growth rate and architecture. Previously, the Kelch repeat F-box gene family of KMDs have been shown to be important down-regulators of both positive cytokinin signaling and phenylpropanoid biosynthesis, but upstream cues were unknown. This report places the KMD family regulation of plant growth and defense into its biotic context.


2021 ◽  
Vol 12 ◽  
Author(s):  
Christos A. Christakis ◽  
Georgia Daskalogiannis ◽  
Anastasia Chatzaki ◽  
Emmanouil A. Markakis ◽  
Glykeria Mermigka ◽  
...  

Halophytic endophytes potentially contribute to the host’s adaptation to adverse environments, improving its tolerance against various biotic and abiotic stresses. Here, we identified the culturable endophytic bacteria of three crop wild relative (CWR) halophytes: Cakile maritima, Matthiola tricuspidata, and Crithmum maritimum. In the present study, the potential of these isolates to improve crop adaptations to various stresses was investigated, using both in vitro and in-planta approaches. Endophytic isolates were identified by their 16S rRNA gene sequence and evaluated for their ability to: grow in vitro in high levels of NaCl; inhibit the growth of the economically important phytopathogens Verticillium dahliae, Ralstonia solanacearum, and Clavibacter michiganensis and the human pathogen Aspergillus fumigatus; provide salt tolerance in-planta; and provide growth promoting effect in-planta. Genomes of selected isolates were sequenced. In total, 115 endophytic isolates were identified. At least 16 isolates demonstrated growth under increased salinity, plant growth promotion and phytopathogen antagonistic activity. Three showed in-planta suppression of Verticillium growth. Furthermore, representatives of three novel species were identified: two Pseudomonas species and one Arthrobacter. This study provides proof-of-concept that the endophytes from CWR halophytes can be used as “bio-inoculants,” for the enhancement of growth and stress tolerance in crops, including the high-salinity stress.


Sign in / Sign up

Export Citation Format

Share Document