scholarly journals Evidence for the Heterogeneity of the Pore Structure of Rocks from Comparing the Results of Various Techniques for Measuring Hydraulic Properties

Author(s):  
Laura L. Schepp ◽  
Joerg Renner

AbstractWe applied three oscillatory methods, the previously presented axial pore-pressure and pore-flow methods, and the laboratory application of the radial oscillatory pore-flow method, and performed steady-state flow-through experiments (Darcy tests), for comparison, in experiments on samples of Westerly granite and Wilkeson sandstone. The granite and the sandstone exhibit pore spaces dominated by micro-fractures and by the granular-medium character with a connected porosity of about 1 and 10 %, respectively. Permeability determined by the axial pore-pressure method shows the closest agreement with the results of the Darcy tests. Apparent porosity and drained modulus derived from specific storage capacity deviate from measured connected porosity and reference values, respectively. The observed deviations of the hydraulic properties between methods suggest that they bear information about the structure of the pore space. Only for the sandstone, anisotropy in hydraulic properties appears to contribute to differences between the results of the various methods. We argue that oscillatory testing provides three indicators for heterogeneity, period dependence, the relation between apparent and connected porosity, and the relation between amplitude ratio and apparent penetration depth, calculated from the simple scaling law for homogeneous materials. These indicators consistently classify the samples of Wilkeson sandstone as hydraulically homogeneous and those of Westerly granite as heterogeneous.

2017 ◽  
Vol 11 (6) ◽  
pp. 2799-2813 ◽  
Author(s):  
Colin R. Meyer ◽  
Ian J. Hewitt

Abstract. Meltwater is produced on the surface of glaciers and ice sheets when the seasonal energy forcing warms the snow to its melting temperature. This meltwater percolates into the snow and subsequently runs off laterally in streams, is stored as liquid water, or refreezes, thus warming the subsurface through the release of latent heat. We present a continuum model for the percolation process that includes heat conduction, meltwater percolation and refreezing, as well as mechanical compaction. The model is forced by surface mass and energy balances, and the percolation process is described using Darcy's law, allowing for both partially and fully saturated pore space. Water is allowed to run off from the surface if the snow is fully saturated. The model outputs include the temperature, density, and water-content profiles and the surface runoff and water storage. We compare the propagation of freezing fronts that occur in the model to observations from the Greenland Ice Sheet. We show that the model applies to both accumulation and ablation areas and allows for a transition between the two as the surface energy forcing varies. The largest average firn temperatures occur at intermediate values of the surface forcing when perennial water storage is predicted.


2016 ◽  
Vol 113 (13) ◽  
pp. 3482-3487 ◽  
Author(s):  
Sébastien Boyer ◽  
Dipanwita Biswas ◽  
Ananda Kumar Soshee ◽  
Natale Scaramozzino ◽  
Clément Nizak ◽  
...  

Variation and selection are the core principles of Darwinian evolution, but quantitatively relating the diversity of a population to its capacity to respond to selection is challenging. Here, we examine this problem at a molecular level in the context of populations of partially randomized proteins selected for binding to well-defined targets. We built several minimal protein libraries, screened them in vitro by phage display, and analyzed their response to selection by high-throughput sequencing. A statistical analysis of the results reveals two main findings. First, libraries with the same sequence diversity but built around different “frameworks” typically have vastly different responses; second, the distribution of responses of the best binders in a library follows a simple scaling law. We show how an elementary probabilistic model based on extreme value theory rationalizes the latter finding. Our results have implications for designing synthetic protein libraries, estimating the density of functional biomolecules in sequence space, characterizing diversity in natural populations, and experimentally investigating evolvability (i.e., the potential for future evolution).


Fractals ◽  
2020 ◽  
Vol 28 (02) ◽  
pp. 2050025
Author(s):  
PENG XU ◽  
LIPEI ZHANG ◽  
BINQI RAO ◽  
SHUXIA QIU ◽  
YUQING SHEN ◽  
...  

Hydraulic tortuosity is one of the key parameters for evaluating effective transport properties of natural and artificial porous media. A pore-scale model is developed for fluid flow through porous media based on fractal geometry, and a novel analytical tortuosity–porosity correlation is presented. Numerical simulations are also performed on two-dimensional Sierpinski carpet model. The proposed fractal model is validated by comparison with numerical results and available experimental data. Results show that hydraulic tortuosity depends on both statistical and morphological characteristics of porous media. The exponents for the scaling law between tortuosity and porosity depend on pore size distribution and tortuous fractal dimension. It has been found that hydraulic tortuosity indicates evident anisotropy for asymmetrical particle arrangements under the same statistical characteristics of porous media. The present work may be helpful to understand the transport mechanisms of porous materials and provide guidelines for the development of oil and gas reservoir, water resource and chemical engineering, etc.


2018 ◽  
Vol 115 (31) ◽  
pp. 7884-7889 ◽  
Author(s):  
Daniel A. Sanchez ◽  
Zhaohe Dai ◽  
Peng Wang ◽  
Arturo Cantu-Chavez ◽  
Christopher J. Brennan ◽  
...  

Layered systems of 2D crystals and heterostructures are widely explored for new physics and devices. In many cases, monolayer or few-layer 2D crystals are transferred to a target substrate including other 2D crystals, and nanometer-scale blisters form spontaneously between the 2D crystal and its substrate. Such nanoblisters are often recognized as an indicator of good adhesion, but there is no consensus on the contents inside the blisters. While gas-filled blisters have been modeled and measured by bulge tests, applying such models to spontaneously formed nanoblisters yielded unrealistically low adhesion energy values between the 2D crystal and its substrate. Typically, gas-filled blisters are fully deflated within hours or days. In contrast, we found that the height of the spontaneously formed nanoblisters dropped only by 20–30% after 3 mo, indicating that probably liquid instead of gas is trapped in them. We therefore developed a simple scaling law and a rigorous theoretical model for liquid-filled nanoblisters, which predicts that the interfacial work of adhesion is related to the fourth power of the aspect ratio of the nanoblister and depends on the surface tension of the liquid. Our model was verified by molecular dynamics simulations, and the adhesion energy values obtained for the measured nanoblisters are in good agreement with those reported in the literature. This model can be applied to estimate the pressure inside the nanoblisters and the work of adhesion for a variety of 2D interfaces, which provides important implications for the fabrication and deformability of 2D heterostructures and devices.


1988 ◽  
Vol 78 (6) ◽  
pp. 2025-2040
Author(s):  
D.W. Simpson ◽  
W.S. Leith ◽  
C.H. Scholz

Abstract The temporal distribution of induced seismicity following the filling of large reservoirs shows two types of response. At some reservoirs, seismicity begins almost immediately following the first filling of the reservoir. At others, pronounced increases in seismicity are not observed until a number of seasonal filling cycles have passed. These differences in response may correspond to two fundamental mechanisms by which a reservoir can modify the strength of the crust—one related to rapid increases in elastic stress due to the load of the reservoir and the other to the more gradual diffusion of water from the reservoir to hypocentral depths. Decreased strength can arise from changes in either elastic stress (decreased normal stress or increased shear stress) or from decreased effective normal stress due to increased pore pressure. Pore pressure at hypocentral depths can rise rapidly, from a coupled elastic response due to compaction of pore space, or more slowly, with the diffusion of water from the surface.


2021 ◽  
Author(s):  
Nikolay Baryshnikov ◽  
Evgeniy Zenchenko ◽  
Sergey Turuntaev

<p>Currently, a number of studies showing that the injection of fluid into the formation can cause induced seismicity. Usually, it is associated with a change in the stress-strain state of the reservoir during the pore pressure front propagation. Modeling this process requires knowledge of the features of the filtration properties of reservoir rocks. Many researchers note the fact that the measured permeability of rock samples decreases at low pressure gradients. Among other things, this may be due to the formation of boundary adhesion layers with altered properties at the interfaces between the liquid and solid phases. The characteristic thickness of such layer can be fractions of a micron, and the effect becomes significant when filtering the fluid in rocks with a comparable characteristic pore size. The purpose of this work was to study the filtration properties of rock samples with low permeability at low flow rates. Laboratory modeling of such processes is associated with significant technical difficulties, primarily with the accuracy limit of measuring instruments when approaching zero speed values. The technique used by us to conduct the experiment and data processing allows us to study the dependence of the apparent permeability on the pore pressure gradient in the range of 0.01 MPa/m, which is comparable to the characteristic pressure gradients during the development of oil fields. In the course of the study, we carried out laboratory experiments on limestone core samples, during which the dependencies of their apparent permeability on the pore pressure gradient were obtained. We observed a significant decrease in their permeability at low flow rates. In the course of analyzing the experimental results, we proposed that a decrease in apparent permeability may occur due to the effect of even a small amount of residual gas in the pore space of the samples. This has been confirmed by additional experiments. The possibility of clogging of core sample pore space must be considered when conducting when conducting laboratory studies of the core apparent permeability.</p>


2021 ◽  
Author(s):  
Aamer Albannay ◽  
Binh Bui ◽  
Daisuke Katsuki

Abstract Capillary condensation is the condensation of the gas inside nano-pore space at a pressure lower than the bulk dew point pressure as the result of multilayer adsorption due to the high capillary pressure inside the small pore throat of unconventional rocks. The condensation of liquid in nano-pore space of rock changes its mechanical and acoustic properties. Acoustic properties variation due to capillary condensation provides us a tool to monitor phase change in reservoir as a result of nano-confinement as well as mapping the area where phase change occurs as well as characterize pore size distribution. This is particularly important for tight formations where confinement has a strong effect on phase behavior that is challenging to measure experimentally. Theoretical studies have examined the effects of capillary condensation; however, these findings have not been verified experimentally. The main objective of this study is to experimentally investigate the effect of capillary condensation on the mechanical and acoustic properties of shale samples. The mechanical and acoustic characterization of the samples was carried out experimentally using a state-of-the-art tri-axial facility at the Colorado School of Mines. The experimental set-up is capable of the simultaneous acquisition of coupled stress, strain, resistivity, acoustic and flow data. Carbon dioxide was used as the pore pressure fluid in these experiments. After a comprehensive characterization of shale samples, experiments were conducted by increasing the pore pressure until condensation occurs while monitoring the mechanical and acoustic properties of the sample to quantify the effect of capillary condensation on the mechanical and acoustic properties of the sample. Experimental data show a 5% increase in Young's Modulus as condensation occurs. This increase is attributed to the increase in pore stiffness as condensation occurs reinforcing the grain contact. An initial decrease in compressional velocity was observed as pore pressure increases before condensation occurs which is attributed to the expansion of the pore volume when pore pressure increases. After this initial decrease, compressional velocity slightly increases at a pressure around 750 - 800 psi which is close to the condensation pressure. We also observed a noticeable increase in shear velocity when capillary condensation occurs, this could be due to the immobility of the condensed liquid phase at the pore throats. The changes of geomechanical and acoustic signatures were observed at around 750 - 800 psi at 27°C, which is the dew point pressure of the fluid in the nano-pore space of the sample at this temperature. While the unconfined bulk dew point pressure of carbon dioxide at the same temperature is 977 psi. Hence, this study marks the first measurement of the dew point of fluid in nano-pore space and potentially leads to the construction of the phase envelope of fluid under confinement.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
P. S. Ringrose ◽  
T. A. Meckel

AbstractMost studies on CO2 emissions reduction strategies that address the ‘two-degree scenario’ (2DS) recognize a significant role for CCS. For CCS to be effective, it must be deployed globally on both existing and emerging energy systems. For nations with large-scale emissions, offshore geologic CO2 storage provides an attractive and efficient long-term strategy. While some nations are already developing CCS projects using offshore CO2 storage resources, most geographic regions have yet to begin. This paper demonstrates the geologic significance of global continental margins for providing broadly-equitable, geographically-relevant, and high-quality CO2 storage resources. We then use principles of pore-space utilization and subsurface pressure constraints together with analogs of historic industry well deployment rates to demonstrate how the required storage capacity can be developed as a function of time and technical maturity to enable the global deployment of offshore storage for facilitating 2DS. Our analysis indicates that 10–14 thousand CO2 injection wells will be needed globally by 2050 to achieve this goal.


Author(s):  
Richard Holdich ◽  
Serguei Kosvintsev ◽  
Iain Cumming ◽  
Sergey Zhdanov

In filtration, the concept of pore size is not easy to define. In microfiltration, there are numerous advantages in employing a surface filtering membrane, rather than one relying on depth filtration mechanisms from a tortuous pore flow channel. Modern manufacturing techniques provide means to produce surface filtering membranes. For filtration, it is shown that a suitable pore design is an array of long thin slots. An analysis of fluid flow through the slots suggests that a short slot is adequate, but experimental data with suspended material indicates that slot length is important. Using long slots and careful control of the flow through the membrane it is possible to filter deforming particles such as oil drops from water.


Sign in / Sign up

Export Citation Format

Share Document