Vegetation type alters water and nitrogen budgets in a controlled, replicated experiment on residential-sized rain gardens planted with prairie, shrub, and turfgrass

2016 ◽  
Vol 19 (4) ◽  
pp. 1665-1691 ◽  
Author(s):  
Mallika A. Nocco ◽  
Sara E. Rouse ◽  
Nicholas J. Balster
1979 ◽  
Vol 14 (1) ◽  
pp. 71-88
Author(s):  
S.E. Penttinen ◽  
P.H. Bouthillier ◽  
S.E. Hrudey

Abstract Studies on the chronic low dissolved oxygen problems encountered under winter ice in the Red Deer River have generally been unable to account for dissolved oxygen depletion in terms of known manmade inputs. An experimental program was developed to assess the possible nature and approximate bounds of oxygen demand due to natural organic runoff carried to the Red Deer River by a small tributary stream, the Blindman River. The study employed an electrolytic respirometer on stream water samples subjected to prior concentration by vacuum evaporation. Evaluation of carbon and nitrogen budgets in conjunction with the measured oxygen demand indicate that biochemical oxygen demand is originating with natural organic runoff in tributaries of the Red Deer River. The results provide a basis for estimation of the possible contribution to the observed oxygen demand in the Red Deer River originating from natural organic runoff.


2020 ◽  
Vol 17 (1) ◽  
pp. 57-71
Author(s):  
Wilfried Winiwarter ◽  
Barbara Amon ◽  
Zhaohai Bai ◽  
Andrzej Greinert ◽  
Katrin Kaltenegger ◽  
...  

2021 ◽  
Vol 13 (4) ◽  
pp. 2006
Author(s):  
Ning Ding ◽  
Jingfeng Zhu ◽  
Xiao Li ◽  
Xiangrong Wang

The rapid growth of metropolitan regions is closely associated with high nitrogen (N) flows, which is known as the most important reason for widespread water pollution. It is, therefore, crucial to explore the spatiotemporal patterns of N budgets under intensive human activity. In this study, we estimated the long-term (2000–2015) N budgets by integrating the net anthropogenic nitrogen input (NANI) and the export coefficient model (ECM) in the Yangtze River Delta Urban Agglomeration (YRDUA), a typical metropolitan area with strong human disturbances. The results revealed that the NANI decreased by 10% from 2000 to 2015, while N exports showed a 6% increase. Hotspots for N budgets were found in the northeastern areas, where cropland and construction land were dominant. The linear regression showed a close relationship between the NANI and N export, and about 18% of the NANI was exported into the river system. By revealing the critical sources and drivers of N budgets over time, our work aimed to provide effective information for regional policy on nitrogen management. Future strategies, such as improving the fertilizer efficiency, optimizing the land use pattern, and controlling the population density, are necessary in order to address the environmental challenge concerns of excessive N.


2021 ◽  
Vol 13 (15) ◽  
pp. 2935
Author(s):  
Chunhua Qian ◽  
Hequn Qiang ◽  
Feng Wang ◽  
Mingyang Li

Building a high-precision, stable, and universal automatic extraction model of the rocky desertification information is the premise for exploring the spatiotemporal evolution of rocky desertification. Taking Guizhou province as the research area and based on MODIS and continuous forest inventory data in China, we used a machine learning algorithm to build a rocky desertification model with bedrock exposure rate, temperature difference, humidity, and other characteristic factors and considered improving the model accuracy from the spatial and temporal dimensions. The results showed the following: (1) The supervised classification method was used to build a rocky desertification model, and the logical model, RF model, and SVM model were constructed separately. The accuracies of the models were 73.8%, 78.2%, and 80.6%, respectively, and the kappa coefficients were 0.61, 0.672, and 0.707, respectively. SVM performed the best. (2) Vegetation types and vegetation seasonal phases are closely related to rocky desertification. After combining them, the model accuracy and kappa coefficient improved to 91.1% and 0.861. (3) The spatial distribution characteristics of rocky desertification in Guizhou are obvious, showing a pattern of being heavy in the west, light in the east, heavy in the south, and light in the north. Rocky desertification has continuously increased from 2001 to 2019. In conclusion, combining the vertical spatial structure of vegetation and the differences in seasonal phase is an effective method to improve the modeling accuracy of rocky desertification, and the SVM model has the highest rocky desertification classification accuracy. The research results provide data support for exploring the spatiotemporal evolution pattern of rocky desertification in Guizhou.


2017 ◽  
Vol 47 (1) ◽  
pp. 32-65 ◽  
Author(s):  
Dong Won Shin ◽  
Laura McCann

This study explores factors affecting adoption of two stormwater management practices, rain gardens and rain barrels. Mail survey data from Columbia, Missouri indicate adoption rates of 3.12 percent (rain gardens) and 7.47 percent (rain barrels). This unique dataset enables us to distinguish among nonadopters using knowledge levels, and to investigate the effect of practice-specific barriers. Clustered multinomial logistic regressions reveal serious gardeners are more likely to adopt both practices. Specific barriers differ by practice and type of nonadopter. Adding practice-specific barriers increased pseudo R2 values from 0.12 to 0.22 for rain gardens and from 0.13 to 0.26 for rain barrels.


2007 ◽  
Vol 7 (1) ◽  
pp. 69-79 ◽  
Author(s):  
T. Wagner ◽  
S. Beirle ◽  
T. Deutschmann ◽  
M. Grzegorski ◽  
U. Platt

Abstract. A new method for the satellite remote sensing of different types of vegetation and ocean colour is presented. In contrast to existing algorithms relying on the strong change of the reflectivity in the red and near infrared spectral region, our method analyses weak narrow-band (few nm) reflectance structures (i.e. "fingerprint" structures) of vegetation in the red spectral range. It is based on differential optical absorption spectroscopy (DOAS), which is usually applied for the analysis of atmospheric trace gas absorptions. Since the spectra of atmospheric absorption and vegetation reflectance are simultaneously included in the analysis, the effects of atmospheric absorptions are automatically corrected (in contrast to other algorithms). The inclusion of the vegetation spectra also significantly improves the results of the trace gas retrieval. The global maps of the results illustrate the seasonal cycles of different vegetation types. In addition to the vegetation distribution on land, they also show patterns of biological activity in the oceans. Our results indicate that improved sets of vegetation spectra might lead to more accurate and more specific identification of vegetation type in the future.


2016 ◽  
Vol 2 (4) ◽  
pp. 165-182 ◽  
Author(s):  
Chelsea L. Petrenko ◽  
Julia Bradley-Cook ◽  
Emily M. Lacroix ◽  
Andrew J. Friedland ◽  
Ross A. Virginia

Shrub species are expanding across the Arctic in response to climate change and biotic interactions. Changes in belowground carbon (C) and nitrogen (N) storage are of global importance because Arctic soils store approximately half of global soil C. We collected 10 (60 cm) soil cores each from graminoid- and shrub-dominated soils in western Greenland and determined soil texture, pH, C and N pools, and C:N ratios by depth for the mineral soil. To investigate the relative chemical stability of soil C between vegetation types, we employed a novel sequential extraction method for measuring organo-mineral C pools of increasing bond strength. We found that (i) mineral soil C and N storage was significantly greater under graminoids than shrubs (29.0 ± 1.8 versus 22.5 ± 3.0 kg·C·m−2 and 1.9 ± .12 versus 1.4 ± 1.9 kg·N·m−2), (ii) chemical mechanisms of C storage in the organo-mineral soil fraction did not differ between graminoid and shrub soils, and (iii) weak adsorption to mineral surfaces accounted for 40%–60% of C storage in organo-mineral fractions — a pool that is relatively sensitive to environmental disturbance. Differences in these C pools suggest that rates of C accumulation and retention differ by vegetation type, which could have implications for predicting future soil C pool storage.


Sign in / Sign up

Export Citation Format

Share Document