The Impact of Process Sequences on Pollutant Removal Efficiencies in Tannery Wastewater Treatment

2012 ◽  
Vol 224 (1) ◽  
Author(s):  
George M. Ayoub ◽  
Abeer Hamzeh ◽  
Mahmoud Al-Hindi
Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 389 ◽  
Author(s):  
Cheng Dong ◽  
Mengting Li ◽  
Lin-Lan Zhuang ◽  
Jian Zhang ◽  
Youhao Shen ◽  
...  

Subsurface flow constructed wetland (SSFCW) has been applied for wastewater treatment for several decades. In recent years, the combination of ferric-carbon micro-electrolysis (Fe/C-M/E) and SSFCW was proven to be an effective method of multifarious sewage treatment. However, Ferric substrate created a relatively reductive condition, decreased the oxidation efficiency of NH4+-N, and blocked the following denitrification process, which led to the low removal efficiencies of NH4+-N and total nitrogen (TN). In this study, partial aeration was introduced into the ferric-carbon micro-electrolysis SSFCW (Fe/C-M/E CW) system to solve the problem above. The water quality and nitrogen-related functional genes of bacteria on the surface of substrate were measured for mechanism exploration. The results showed that, the removal efficiencies of NH4+-N and total phosphorus (TP) in an aerated Fe/C-M/E CW system were 96.97% ± 6.06% and 84.62% ± 8.47%, much higher than 43.33% ± 11.27% and 60.16% ± 2.95% in the unaerated Fe/C-M/E CW systems. However, the TN removal in Fe/C-M/E CW system was not enhanced by aeration, which could be optimized by extending more anoxic section for denitrification.


Processes ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 184 ◽  
Author(s):  
Anie Yulistyorini ◽  
Miller Camargo-Valero ◽  
Sukarni Sukarni ◽  
Nugroho Suryoputro ◽  
Mujiyono Mujiyono ◽  
...  

In order to assess the impact of the Sanitation by Communities (SANIMAS) program for community-led sanitation in Indonesia (established in 2002), this research work was conducted with the aim of characterizing the current performance of anaerobic baffled reactors (ABRs), which were deployed in high numbers for the provision of domestic wastewater treatment in densely populated urban areas in Malang (Indonesia). Small and decentralized sewage treatment facilities serve ≈3% of the total population in Malang, including 89 ABR treatment plants. Our findings reveal that only 14% of the 89 ABRs in Malang have an acceptable performance with regard to pollutant removal and integrity of their building structure, but the majority of them produce a treated effluent of poor quality, according to discharge consents set by the Ministry of Environment and Forestry of the Republic of Indonesia (Regulation No. P.68/2016). Clearly the lack of consistent operation and maintenance practices have had a detrimental effect on these decentralized sewage treatment systems, despite their robustness and buffer capacity to cope with changes in organic and hydraulic loading rates. Urbanization will continue to exert pressure on the provision of sanitation services in lower and middle economies, and the role of decentralized sewage management systems is expected to be prominent in the UN’s Sustainable Development Goals era (2015–2030); however, sustainable service delivery must be conceived beyond the provision of sanitation infrastructure.


2021 ◽  
Vol 232 (7) ◽  
Author(s):  
K. Marek ◽  
K. Pawęska ◽  
A. Bawiec ◽  
J. Baran

AbstractThe aim of this study was to analyse the impact of velocity in the hydroponic lagoon used as the 3rd stage of municipal wastewater treatment on washing out of the particles suspended in the sewage as well as settled on the bottom of the hydroponic ditch. In order to analyse the flow velocity in the lagoon, 12 cross-sections were determined at points where the speed and motion of particles can change. Wastewater samples were taken in the summer month from each of the 12 sampling points (the depth of 0.1 m) and the basic physicochemical parameters of sewage were determined (BOD5, COD, TOC, TSS, turbidity). In selected cross-sections, a granulometric analysis of particles was made to determine the characteristics of suspended solids in the wastewater flow path. Based on the analysis, it was found that velocities in the lagoon during aeration can be ten times higher (0.070 m·s−1) than those assumed by designers (0.006 m·s−1). Such a large difference means that the sedimentation conditions assumed in the project cannot be met, which may result in an increase in the total suspended solids and organic matter concentrations at the outflow to the receiving water body. During the flow through the hydroponic ditch, the highest efficiency of pollutant removal was indicated for BOD5 — 88.7% and TSS — 80%, while the COD removal occurred with the lowest efficiency — 34.1%. Improving flow conditions as designed in the hydroponic lagoon technological project may increase the efficiency of wastewater treatment at the third stage of treatment.


2020 ◽  
Vol 7 ◽  
pp. 7
Author(s):  
Mattia Pierpaoli ◽  
Michał Rycewicz ◽  
Aneta Łuczkiewicz ◽  
Sylwia Fudala-Ksiązek ◽  
Robert Bogdanowicz ◽  
...  

Landfill leachate possesses high concentrations of ammonia, micropollutants, and heavy metals, and are characterised for low biodegradability. For this reason, conventional treatment technologies may result ineffective for complete pollutant removal. Electrochemical oxidation allows most of the of recalcitrant pollutants to be oxidised effectively within an easy operational and acceptable retention time, without the need to provide additional chemicals, and without producing waste materials. The mineralisation efficiency and electrode durability depend on the nature of the electrode material. The conventionally adopted anodes can contain critical raw materials (CRMs), and are subject to extreme corrosion conditions. CRM-free electrodes, such as carbon and graphite-based, exhibit a lower efficiency, and are subject to faster deactivation, or, as for lead-dioxide-based electrodes, can constitute a hazard due to the release into the effluent of the coating corrosion products. In this study, the relationship between electrode type, CRM content, and the removal efficiencies of organic compounds and ammonium-nitrogen (N-NH4) was investigated. Material criticality was estimated by the supply risk with economic importance indexes reported in the 2017 EU CRM List. The COD and N-NH4 removal efficiencies were obtained from a literature analysis of 25 publications. The results show that, while single and multi-oxide-coated electrodes may contain low amounts of CRM, but with limited efficiency, boron-doped diamonds (BDD) may constitute the best compromise in terms of a reduced content of CRM and a high mineralisation efficiency.


2012 ◽  
Vol 65 (2) ◽  
pp. 368-379 ◽  
Author(s):  
Yoshiaki Tsuzuki

The evaluation of centralised wastewater treatment plants (WWTPs) in planning and management is sometimes based solely on effluent pollutant concentrations or pollutant loads. For sanitation purposes, the effluent pollutant concentrations/loads of WWTPs are important; of course, but from the point of view of wastewater treatment, the pollutant removal performance should also be evaluated. Focussing on low- and middle-income countries, especially those in tropical regions, published kinetics studies on biological WWTPs (such as oxidation ditches and aerated lagoons) are summarised in this paper. In most studies, effluent pollutant concentrations/loads are described as first-order linear functions of influent pollutant concentrations/loads. Therefore, pollutant removal efficiencies can be expressed as first-order linear functions of the reciprocal of influent pollutant concentrations/loads with negative coefficients. This implies that pollutant removal efficiencies increase with influent pollutant concentration/load increases. Based on pollutant removal efficiency functions, biological or ecological WWTPs when operating with small influent pollutant concentrations/loads should change their management to increase influent pollutant concentrations/loads in order to increase pollutant removal efficiencies. It may, however, be possible for technological development in wastewater treatment to overcome this problem.


2013 ◽  
Vol 69 (2) ◽  
pp. 350-357 ◽  
Author(s):  
Miriam Ben-shalom ◽  
Semion Shandalov ◽  
Asher Brenner ◽  
Gideon Oron

Three pilot-scale duckweed pond (DP) wastewater treatment systems were designed and operated to examine the effect of aeration and effluent recycling on treatment efficiency. Each system consisted of two DPs in series fed by pre-settled domestic sewage. The first system (duckweed+ conventional treatment) was ‘natural’ and included only duckweed plants. The second system (duckweed aeration) included aeration in the second pond. The third system (duckweed+ aeration+ circulation) included aeration in the second pond and effluent recycling from the second to the first pond. All three systems demonstrated similarly efficient removal of organic matter and nutrients. Supplemental aeration had no effect on either dissolved oxygen levels or on pollutant removal efficiencies. Although recycling had almost no influence on nutrient removal efficiencies, it had a positive impact on chemical oxygen demand and total suspended solids removals due to equalization of load and pH, which suppressed algae growth. Recycling also improved the appearance and growth rate of the duckweed plants, especially during heavy wastewater loads.


2021 ◽  
Vol 11 (4) ◽  
Author(s):  
Ayla Uysal ◽  
Eda Boyacioglu

AbstractIn this study, titanium tetrachloride (TiCl4), zirconium tetrachloride (ZrCl4), and zirconium oxychloride (ZrOCl2·8H2O) were evaluated using jar test experiments as coagulants and compared with traditional aluminum sulfate (Al2(SO4)3·18H2O) and ferric chloride (FeCl3) for industrial wastewater treatment. The effects of the initial pH of 4–10 and initial coagulant doses of 10–100 mg/L on chemical oxygen demand (COD) and total suspended solids (TSS) removal were investigated. The performances of the five coagulants were also assessed in terms of the settled sludge volume, the sludge volume index (SVI), and removal efficiencies of metals, color, and total phosphorus (TP) under optimum conditions. In addition, the contents of the residual sludge produced for all five tested coagulants under optimum conditions were determined. The results showed that the maximum removal efficiency of COD (69.33%) was achieved using 100 mg/L TiCl4 at pH 8. The maximum removal efficiency of TSS (98.32%) was achieved using 50 mg/L Al2(SO4)3·18H2O at both pH 8 and 10. The settled sludge volume and SVI generated by TiCl4 were lower than that for the other four tested coagulants. ZrCl4, ZrOCl2·8H2O, FeCl3, and Al2(SO4)3·18H2O resulted in 128.13, 92.39, 72.26, and 69.66 mL/g SVI, while that using TiCl4 was 48.84 mL/g. Ti- and Zr-based coagulants achieved better removal efficiencies of TP, Zn, and Cu than FeCl3 and Al(SO4)3·18H2O. The residual sludge from using Ti and Zr coagulants had a very high TP content. The results indicated that Ti- and Zr-based coagulants could be used as alternatives to traditional coagulants for industrial wastewater treatment.


2010 ◽  
Vol 16 (2) ◽  
pp. 285-288 ◽  
Author(s):  
Weibin TANG ◽  
Houzhen ZHOU ◽  
Zhouliang TAN ◽  
Xudong LI

1982 ◽  
Vol 14 (1-2) ◽  
pp. 121-133
Author(s):  
C Forsberg ◽  
B Hawerman ◽  
B Hultman

Experience from advanced municipal wastewater treatment plants and recovery of polluted waters are described for the last ten years in Sweden. Except in municipalities with large recipients, the urban population is served by treatment plants with combined biological and chemical treatment. Most of these plants are post-precipitation plants. Several modified operational modes have been developed in order to improve the removal efficiencies of pollutants and to reduce the costs. Results are presented on the recovery of specially investigated lakes with a lowered supply of total phosphorus and organic matter.


Sign in / Sign up

Export Citation Format

Share Document