scholarly journals Telmisartan attenuates kidney apoptosis and autophagy-related protein expression levels in an intermittent hypoxia mouse model

2018 ◽  
Vol 23 (1) ◽  
pp. 341-348 ◽  
Author(s):  
Xiao-Bin Zhang ◽  
Jing-Huang Cai ◽  
Yu-Yun Yang ◽  
Yi-Ming Zeng ◽  
Hui-Qing Zeng ◽  
...  
2020 ◽  
Vol 24 (3) ◽  
pp. 1259-1260
Author(s):  
Xiao-Bin Zhang ◽  
Jing-Huang Cai ◽  
Yu-Yun Yang ◽  
Yi-Ming Zeng ◽  
Hui-Qing Zeng ◽  
...  

2016 ◽  
Vol 11 (5) ◽  
pp. 1839-1846 ◽  
Author(s):  
TIANMIN WU ◽  
JINSHUI CHEN ◽  
LIUFANG FAN ◽  
WENYAN XIE ◽  
CHANGSHENG XU ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Qilu Wei ◽  
Ning Kong ◽  
Xiaohui Liu ◽  
Run Tian ◽  
Ming Jiao ◽  
...  

Abstract Background Osteoarthritis (OA) is a disease of the entire joint involving synovial fibrosis and inflammation. Pathological changes to the synovium can accelerate the progression of OA. Pirfenidone (PFD) is a potent anti-fibrotic drug with additional anti-inflammatory properties. However, the influence of PFD on OA is unknown. Methods Proliferation of human fibroblast-like synoviocytes (FLSs) after treatment with TGF-β1 or PFD was evaluated using a Cell Counting Kit-8 assay and their migration using a Transwell assay. The expression of fibrosis-related genes (COL1A1, TIMP-1, and ACTA-2) and those related to inflammation (IL-6 and TNF-α) was quantified by real-time quantitative PCR. The protein expression levels of COL1A1, α-SMA (coded by ACTA-2), IL-6 and TNF-α were measured by enzyme-linked immunosorbent assay. A rabbit model of OA was established and then PFD was administered by gavage. The expression of genes related to fibrosis (COL1A1, TIMP-1, and ADAM-12) and inflammation (IL-6 and TNF-α) was measured using RNA extracted from the synovium. Synovial tissue was examined histologically after staining with H&E, Masson’s trichrome, and immunofluorescence. Synovitis scores, the volume fraction of collagen, and mean fluorescence intensity were calculated. Degeneration of articular cartilage was analyzed using a Safranin O-fast green stain and OARSI grading. Results The proliferation of FLSs was greatest when induced with 2.5 ng/ml TGF-β1 although it did not promote their migration. Therefore, 2.5 ng/ml TGF-β1 was used to stimulate the FLSs and evaluate the effects of PFD, which inhibited the migration of FLSs at concentrations as low as 1.0 mg/ml. PFD decreased the expression of COL1A1 while TGF-β1 increased both mRNA and protein expression levels of IL-6 but had no effect on α-SMA or TNF-α expression. PFD decreased mRNA expression levels of COL1A1, IL-6, and TNF-α in vivo. H&E staining and synovitis scores indicated that PFD reduced synovial inflammation, while Masson’s trichrome and immunofluorescence staining suggested that PFD decreased synovial fibrosis. Safranin O-Fast Green staining and the OARSI scores demonstrated that PFD delayed the progression of OA. Conclusions PFD attenuated synovial fibrosis and inflammation, and postponed the progression of osteoarthritis in a modified Hulth model of OA in rabbits, which was related to its anti-fibrotic and anti-inflammatory properties.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii231-ii232
Author(s):  
Katharine Halligan ◽  
Ann-Catherine Stanton ◽  
Matthew Halbert ◽  
Brian Golbourn ◽  
Stephen Mack ◽  
...  

Abstract Pediatric glioblastoma (pGBM) are incurable brain tumors with overall poor prognosis and response to treatments due to molecular and epigenetic heterogeneity. In particular, the MYCN subtype of pGBM are a highly aggressive form of GBM with a dismal median survival of only 14 months. Furthermore, this subtype is enriched with loss of the tumor suppressor genes TP53 and PTEN, leading to aberrantly active PI3K-AKT signaling pathway and DNA-checkpoint abnormalities. Here, we report the generation of a novel syngeneic mouse model that recapitulates the features of the MYCN subtype of pGBM. We isolated Sox2-Cre neural stem cells from C57BL/6 mice and transduced inverted retroviral-cassettes of the murine Mycn oncogene simultaneously with shRNA targeting tumor suppressor genes p53 and Pten. Retroviral-cassettes are flanked by tandem LoxP sites arranged so that Cre recombinase expression inverts the cassettes in frame allowing for MYCN protein expression and loss of the P53/PTEN proteins. Transgene activation is accompanied with selectable cell surface markers and fluorescent tags enabling for fluorescent activated cell sorting (FACS) of the desired cell populations. Neural stem cells with MYCN protein expression and concurrent silencing of P53 and PTEN protein (NPP cells) result in significantly increased proliferation and activation of PI3K-AKT pathway as compared to control neural stem cells and have. Injection of NPP cells into the forebrain of immune competent C57BL/6 mice result in the formation of invasive high-grade gliomas with a lethal phenotype at ~50 days post injection. Using several next generation brain penetrant small molecule inhibitors of the PI3K-AKT pathway, we show inhibition of tumorigenesis in vitro. Moreover, we have identified several novel mechanisms of PI3KAKT treatment resistance and are currently identifying therapies that may overcome this resistance through RNA seq analysis. In summary, well defined genetic drivers of GBM can lead to informed mouse model generation to test promising therapies.


2021 ◽  
Vol 22 (2) ◽  
pp. 931
Author(s):  
Jihyun Lee ◽  
Yujin Jung ◽  
Seo won Jeong ◽  
Ga Hee Jeong ◽  
Gue Tae Moon ◽  
...  

The Hippo signaling pathway plays a key role in regulating organ size and tissue homeostasis. Hippo and two of its main effectors, yes-associated protein (YAP) and WWTR1 (WW domain-containing transcription regulator 1, commonly listed as TAZ), play critical roles in angiogenesis. This study investigated the role of the Hippo signaling pathway in the pathogenesis of rosacea. We performed immunohistochemical analyses to compare the expression levels of YAP and TAZ between rosacea skin and normal skin in humans. Furthermore, we used a rosacea-like BALB/c mouse model induced by LL-37 injections to determine the roles of YAP and TAZ in rosacea in vivo. We found that the expression levels of YAP and TAZ were upregulated in patients with rosacea. In the rosacea-like mouse model, we observed that the clinical features of rosacea, including telangiectasia and erythema, improved after the injection of a YAP/TAZ inhibitor. Additionally, treatment with a YAP/TAZ inhibitor reduced the expression levels of YAP and TAZ and diminished vascular endothelial growth factor (VEGF) immunoreactivity in the rosacea-like mouse model. Our findings suggest that YAP/TAZ inhibitors can attenuate angiogenesis associated with the pathogenesis of rosacea and that both YAP and TAZ are potential therapeutic targets for patients with rosacea.


2021 ◽  
pp. 1-15
Author(s):  
Zijuan Zhang ◽  
Li Hao ◽  
Ming Shi ◽  
Ziyang Yu ◽  
Simai Shao ◽  
...  

Background: Glucagon-like peptide 2 (GLP-2) is a peptide hormone derived from the proglucagon gene expressed in the intestines, pancreas and brain. Some previous studies showed that GLP-2 improved aging and Alzheimer’s disease related memory impairments. Parkinson’s disease (PD) is a progressive neurodegenerative disorder, and to date, there is no particular medicine reversed PD symptoms effectively. Objective: The aim of this study was to evaluate neuroprotective effects of a GLP-2 analogue in the 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) PD mouse model. Methods: In the present study, the protease resistant Gly(2)-GLP-2 (50 nmol/kg ip.) analogue has been tested for 14 days by behavioral assessment, transmission electron microscope, immunofluorescence histochemistry, enzyme-linked immunosorbent assay and western blot in an acute PD mouse model induced by MPTP. For comparison, the incretin receptor dual agonist DA5-CH was tested in a separate group. Results: The GLP-2 analogue treatment improved the locomotor and exploratory activity of mice, and improved bradykinesia and movement imbalance of mice. Gly(2)-GLP-2 treatment also protected dopaminergic neurons and restored tyrosine hydroxylase expression levels in the substantia nigra. Gly(2)-GLP-2 furthermore reduced the inflammation response as seen in lower microglia activation, and decreased NLRP3 and interleukin-1β pro-inflammatory cytokine expression levels. In addition, the GLP-2 analogue improved MPTP-induced mitochondrial dysfunction in the substantia nigra. The protective effects were comparable to those of the dual agonist DA5-CH. Conclusion: The present results demonstrate that Gly(2)-GLP-2 can attenuate NLRP3 inflammasome-mediated inflammation and mitochondrial damage in the substantia nigra induced by MPTP, and Gly(2)-GLP-2 shows neuroprotective effects in this PD animal model.


Sign in / Sign up

Export Citation Format

Share Document