Atomic Structures and Mechanical Properties of Magnetron Co-Sputtered Zr-V-N Coatings

JOM ◽  
2021 ◽  
Author(s):  
Ling Zhang ◽  
Renda Wang ◽  
Fangfang Ge ◽  
Juan Wang
2015 ◽  
Vol 82 (9) ◽  
Author(s):  
Juan Hou ◽  
Zhengnan Yin ◽  
Yingyan Zhang ◽  
Tienchong Chang

Graphynes, a new family of carbon allotropes, exhibit superior mechanical properties depending on their atomic structures and have been proposed as a promising building materials for nanodevices. Accurate modeling and clearer understanding of their mechanical properties are essential to the future applications of graphynes. In this paper, an analytical molecular mechanics model is proposed for relating the elastic properties of graphynes to their atomic structures directly. The closed-form expressions for the in-plane stiffness and Poisson's ratio of graphyne-n are obtained for small strains. It is shown that the in-plane stiffness is a decreasing function whereas Poisson's ratio is an increasing function of the number of acetylenic linkages between two adjacent hexagons in graphyne-n. The present analytical results enable direct linkages between mechanical properties and lattice structures of graphynes; thereby, providing useful guidelines in designing graphyne configurations to suit their potential applications. Based on an effective bond density analysis, a scaling law is also established for the in-plane stiffness of graphyne-n which may have implications for their other mechanical properties.


2010 ◽  
Vol 58 (13) ◽  
pp. 4549-4557 ◽  
Author(s):  
X.-Y. Liu ◽  
R.G. Hoagland ◽  
J. Wang ◽  
T.C. Germann ◽  
A. Misra

Nanoscale ◽  
2019 ◽  
Vol 11 (31) ◽  
pp. 14863-14878 ◽  
Author(s):  
Supriyo Naskar ◽  
Himanshu Joshi ◽  
Banani Chakraborty ◽  
Nadrian C. Seeman ◽  
Prabal K. Maiti

We present a computational framework to model RNA nanotubes with an underlying theoretical model to estimate their mechanical properties.


Author(s):  
S. Fujishiro

The mechanical properties of three titanium alloys (Ti-7Mo-3Al, Ti-7Mo- 3Cu and Ti-7Mo-3Ta) were evaluated as function of: 1) Solutionizing in the beta field and aging, 2) Thermal Mechanical Processing in the beta field and aging, 3) Solutionizing in the alpha + beta field and aging. The samples were isothermally aged in the temperature range 300° to 700*C for 4 to 24 hours, followed by a water quench. Transmission electron microscopy and X-ray method were used to identify the phase formed. All three alloys solutionized at 1050°C (beta field) transformed to martensitic alpha (alpha prime) upon being water quenched. Despite this heavily strained alpha prime, which is characterized by microtwins the tensile strength of the as-quenched alloys is relatively low and the elongation is as high as 30%.


Author(s):  
L.J. Chen ◽  
H.C. Cheng ◽  
J.R. Gong ◽  
J.G. Yang

For fuel savings as well as energy and resource requirement, high strength low alloy steels (HSLA) are of particular interest to automobile industry because of the potential weight reduction which can be achieved by using thinner section of these steels to carry the same load and thus to improve the fuel mileage. Dual phase treatment has been utilized to obtain superior strength and ductility combinations compared to the HSLA of identical composition. Recently, cooling rate following heat treatment was found to be important to the tensile properties of the dual phase steels. In this paper, we report the results of the investigation of cooling rate on the microstructures and mechanical properties of several vanadium HSLA steels.The steels with composition (in weight percent) listed below were supplied by China Steel Corporation: 1. low V steel (0.11C, 0.65Si, 1.63Mn, 0.015P, 0.008S, 0.084Aℓ, 0.004V), 2. 0.059V steel (0.13C, 0.62S1, 1.59Mn, 0.012P, 0.008S, 0.065Aℓ, 0.059V), 3. 0.10V steel (0.11C, 0.58Si, 1.58Mn, 0.017P, 0.008S, 0.068Aℓ, 0.10V).


Author(s):  
D. R. Clarke ◽  
G. Thomas

Grain boundaries have long held a special significance to ceramicists. In part, this has been because it has been impossible until now to actually observe the boundaries themselves. Just as important, however, is the fact that the grain boundaries and their environs have a determing influence on both the mechanisms by which powder compaction occurs during fabrication, and on the overall mechanical properties of the material. One area where the grain boundary plays a particularly important role is in the high temperature strength of hot-pressed ceramics. This is a subject of current interest as extensive efforts are being made to develop ceramics, such as silicon nitride alloys, for high temperature structural applications. In this presentation we describe how the techniques of lattice fringe imaging have made it possible to study the grain boundaries in a number of refractory ceramics, and illustrate some of the findings.


Author(s):  
Li Li-Sheng ◽  
L.F. Allard ◽  
W.C. Bigelow

The aromatic polyamides form a class of fibers having mechanical properties which are much better than those of aliphatic polyamides. Currently, the accepted morphology of these fibers as proposed by M.G. Dobb, et al. is a radial arrangement of pleated sheets, with the plane of the pleats parallel to the axis of the fiber. We have recently obtained evidence which supports a different morphology of this type of fiber, using ultramicrotomy and ion-thinning techniques to prepare specimens for transmission and scanning electron microscopy.


Author(s):  
Ernest L. Hall ◽  
J. B. Vander Sande

The present paper describes research on the mechanical properties and related dislocation structure of CdTe, a II-VI semiconductor compound with a wide range of uses in electrical and optical devices. At room temperature CdTe exhibits little plasticity and at the same time relatively low strength and hardness. The mechanical behavior of CdTe was examined at elevated temperatures with the goal of understanding plastic flow in this material and eventually improving the room temperature properties. Several samples of single crystal CdTe of identical size and crystallographic orientation were deformed in compression at 300°C to various levels of total strain. A resolved shear stress vs. compressive glide strain curve (Figure la) was derived from the results of the tests and the knowledge of the sample orientation.


Sign in / Sign up

Export Citation Format

Share Document