The influence of the structural features of lignin-based polyurethane coatings on ammonium sulfate release: kinetics and thermodynamics of the process

2018 ◽  
Vol 16 (2) ◽  
pp. 449-463 ◽  
Author(s):  
Francisco Avelino ◽  
Isabela Pires Miranda ◽  
Tainá Dantas Moreira ◽  
Helena Becker ◽  
Francisco Belmino Romero ◽  
...  
Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1704 ◽  
Author(s):  
Yunlu Ma ◽  
Xi Liu

The MgAl2O4-spinel has wide applications in various industries and in geosciences. It shows a significant inter-site Mg-Al cation exchange (denoted by the inversion parameter x), which modifies structural features, such as the unit-cell parameters and the sizes of the component polyhedra, and influences the physical and chemical properties. Previous studies mainly focused on the kinetics and thermodynamics of the Mg-Al exchange reaction, with the aim to ascertain the correlation between the inversion parameter and temperature; these studies, however, reached conflicting results. Here, we first reviewed the kinetics studies on the Mg-Al cation exchange reaction, and then reviewed all thermodynamic experiments, with special attention paid to the Mg-Al cation exchange equilibrium and the quench process, which might have modified the cation distributions once attained at high temperatures. We also assessed the accuracies in the temperature measurements and in the quantifications of the x by different analytical methods. With some necessary temperature correction and data removal, we have landed with a generally reliable x-T dataset covering the T-x space of 873 < T < 1887 K and 0.18(1) < x < 0.357(60) (71 data pairs in total). Fitting these x-T data to three most commonly used thermodynamic models, we have obtained more accurate model parameters. Further, we also evaluated the constituent items of the Gibbs free energy for the Mg-Al cation exchange reaction with experimental results from different research fields and reached the conclusion that highly possibly the T Δ S D should not be neglected. Based on this review, we suggest that: (1) Further kinetics study on the Mg-Al exchange reaction should be performed at both low T (<~973 K) and high T (>~1173 K); (2) further Mg-Al exchange equilibrium studies should be carried out at relatively low T and ambient P, as well as in vast ranges of simultaneous high P and high T; and (3) direct experimental measures about the entropies or the enthalpies of the MgAl2O4-spinels disordered to different extents should be conducted with full characterization of the starting materials and detailed description of the experimental procedures.


1969 ◽  
Vol 40 (1) ◽  
pp. 167-178 ◽  
Author(s):  
Marvin H. Stromer ◽  
D. J. Hartshorne ◽  
Helmut Mueller ◽  
Robert V. Rice

Extraction of thin, glycerinated bundles of rabbit psoas muscle with a low ionic strength solvent results in removal first of M lines and then of Z lines. When these extracted myofibrillar bundles are allowed to interact, at adjusted ionic conditions, with the dilute myofibrillar extract or with the fractions obtained at 40% ammonium sulfate saturation from either the myofibrillar extract or from the Bailey extract of natural actomyosin, reconstitution of Z lines occurs. The ammonium sulfate fraction from the Bailey extract of natural actomyosin restores the tetragonal lattice structure of the Z line. Other structural features such as I-band tufts or cross-bridges, M lines and H-zone binding also occur with some of the proteins used for recombination. Although it has not yet been possible to identify exactly the protein(s) constituting the Z line, it appears unlikely that tropomyosin or troponin alone is the major protein of the Z line. A more likely candidate is α-actinin or a combination of α-actinin with another protein(s). In addition, this study demonstrates that basic morphological differences exist between cross-sections through the Z-line lattice and cross-sections through tropomyosin crystals.


Author(s):  
O.C. de Hodgins ◽  
K. R. Lawless ◽  
R. Anderson

Commercial polyimide films have shown to be homogeneous on a scale of 5 to 200 nm. The observation of Skybond (SKB) 705 and PI5878 was carried out by using a Philips 400, 120 KeV STEM. The objective was to elucidate the structural features of the polymeric samples. The specimens were spun and cured at stepped temperatures in an inert atmosphere and cooled slowly for eight hours. TEM micrographs showed heterogeneities (or nodular structures) generally on a scale of 100 nm for PI5878 and approximately 40 nm for SKB 705, present in large volume fractions of both specimens. See Figures 1 and 2. It is possible that the nodulus observed may be associated with surface effects and the structure of the polymers be regarded as random amorphous arrays. Diffraction patterns of the matrix and the nodular areas showed different amorphous ring patterns in both materials. The specimens were viewed in both bright and dark fields using a high resolution electron microscope which provided magnifications of 100,000X or more on the photographic plates if desired.


Author(s):  
D. F. Blake ◽  
L. F. Allard ◽  
D. R. Peacor

Echinodermata is a phylum of marine invertebrates which has been extant since Cambrian time (c.a. 500 m.y. before the present). Modern examples of echinoderms include sea urchins, sea stars, and sea lilies (crinoids). The endoskeletons of echinoderms are composed of plates or ossicles (Fig. 1) which are with few exceptions, porous, single crystals of high-magnesian calcite. Despite their single crystal nature, fracture surfaces do not exhibit the near-perfect {10.4} cleavage characteristic of inorganic calcite. This paradoxical mix of biogenic and inorganic features has prompted much recent work on echinoderm skeletal crystallography. Furthermore, fossil echinoderm hard parts comprise a volumetrically significant portion of some marine limestones sequences. The ultrastructural and microchemical characterization of modern skeletal material should lend insight into: 1). The nature of the biogenic processes involved, for example, the relationship of Mg heterogeneity to morphological and structural features in modern echinoderm material, and 2). The nature of the diagenetic changes undergone by their ancient, fossilized counterparts. In this study, high resolution TEM (HRTEM), high voltage TEM (HVTEM), and STEM microanalysis are used to characterize tha ultrastructural and microchemical composition of skeletal elements of the modern crinoid Neocrinus blakei.


Author(s):  
U. Aebi ◽  
P. Rew ◽  
T.-T. Sun

Various types of intermediate-sized (10-nm) filaments have been found and described in many different cell types during the past few years. Despite the differences in the chemical composition among the different types of filaments, they all yield common structural features: they are usually up to several microns long and have a diameter of 7 to 10 nm; there is evidence that they are made of several 2 to 3.5 nm wide protofilaments which are helically wound around each other; the secondary structure of the polypeptides constituting the filaments is rich in ∞-helix. However a detailed description of their structural organization is lacking to date.


Author(s):  
R.M. Glaeser ◽  
S.B. Hayward

Highly ordered or crystalline biological macromolecules become severely damaged and structurally disordered after a brief electron exposure. Evidence that damage and structural disorder are occurring is clearly given by the fading and eventual disappearance of the specimen's electron diffraction pattern. The fading and disappearance of sharp diffraction spots implies a corresponding disappearance of periodic structural features in the specimen. By the same token, there is a oneto- one correspondence between the disappearance of the crystalline diffraction pattern and the disappearance of reproducible structural information that can be observed in the images of identical unit cells of the object structure. The electron exposures that result in a significant decrease in the diffraction intensity will depend somewhat upon the resolution (Bragg spacing) involved, and can vary considerably with the chemical makeup and composition of the specimen material.


Author(s):  
Godfrey C. Hoskins ◽  
Betty B. Hoskins

Metaphase chromosomes from human and mouse cells in vitro are isolated by micrurgy, fixed, and placed on grids for electron microscopy. Interpretations of electron micrographs by current methods indicate the following structural features.Chromosomal spindle fibrils about 200Å thick form fascicles about 600Å thick, wrapped by dense spiraling fibrils (DSF) less than 100Å thick as they near the kinomere. Such a fascicle joins the future daughter kinomere of each metaphase chromatid with those of adjacent non-homologous chromatids to either side. Thus, four fascicles (SF, 1-4) attach to each metaphase kinomere (K). It is thought that fascicles extend from the kinomere poleward, fray out to let chromosomal fibrils act as traction fibrils against polar fibrils, then regroup to join the adjacent kinomere.


Author(s):  
P. S. Kotval ◽  
C. J. Dewit

The structure of Ta2O5 has been described in the literature in several different crystallographic forms with varying unit cell lattice parameters. Earlier studies on films of Ta2O5 produced by anodization of tantalum have revealed structural features which are not consistent with the parameters of “bulk” Ta2O5 crystalsFilms of Ta2O5 were prepared by anodizing a well-polished surface of pure tantalum sheet. The anodic films were floated off in distilled water, collected on grids, dried and directly examined in the electron microscope. In all cases the films were found to exhibit diffraction patterns representative of an amorphous structure. Using beam heating in the electron microscope, recrystallization of the amorphous films can be accomplished as shown in Fig. 1. As suggested by earlier work, the recrystallized regions exhibit diffraction patterns which consist of hexagonal arrays of main spots together with subsidiary rows of super lattice spots which develop as recrystallization progresses (Figs. 2a and b).


Author(s):  
Bert Ph. M. Menco ◽  
Ido F. Menco ◽  
Frans L.T. Verdonk

Previously we presented an extensive study of the distributions of intramembranous particles of structures in apical surfaces of nasal olfactory and respiratory epithelia of the Sprague-Dawley rat. For the same structures these distributions were compared in samples which were i) chemically fixed and cryo-protected with glycerol before cryo-fixation, after excision, and ii)ultra-rapidly frozen by means of the slam-freezing method. Since a three-dimensional presentation markedly improves visualization of structural features micrographs were presented as stereopairs. Two exposures were made by tiling the sample stage of the electron microscope 6° in either direction with an eucentric goniometer. The negatives (Agfa Pan 25 Professional) were reversed with Kodak Technical Pan Film 2415 developed in D76 1:1. The prints were made from these reversed negatives. As an example tight-junctional features of an olfactory supporting cell in a region where this cell conjoined with two other cells are presented (Fig. 1).


Sign in / Sign up

Export Citation Format

Share Document