scholarly journals IL-2/IL-2R Antibody Complex Enhances Treg-Induced Neuroprotection by Dampening TNF-α Inflammation in an In Vitro Stroke Model

Author(s):  
Mia C. Borlongan ◽  
Chase Kingsbury ◽  
Felipe Esparza Salazar ◽  
Alma R. Lezama Toledo ◽  
German Rivera Monroy ◽  
...  

AbstractThe present in vitro study showed that IL-2/IL-2R antibody complex facilitates Treg-induced neuroprotection in the oxygen glucose deprivation/reoxygenation (OGD/R) model of stroke. First, we examined the role of IL-2/IL-2R-treated Tregs in OGD/R-exposed rat primary cortical cells (PCCs), which represent the cell type of the ischemic gray matter in the stroke brain. Here, OGD/R induced cell death, which was attenuated by Tregs and more robustly by IL-2/IL-2R-treated Tregs, but not by IL-2/IL-2R treatment alone. Second, we next assessed IL-2/IL-2R effects in OGD/R-exposed human oligodendrocyte progenitor cells (OPCs), which correspond to the white matter injury after stroke. Results revealed that a similar pattern neuroprotection as seen in the gray matter, in that OGD/R triggered cell death, which was ameliorated by Tregs and more effectively by IL-2/IL-2R-treated Tregs, but IL-2/IL-2R treatment alone was not therapeutic. Third, as we begin to understand the mechanism underlying IL-2/IL-2R engagement of Tregs, we investigated the inflammatory response in OGD/R-exposed human neural progenitor cells (NPCs), which recapitulate both ischemic gray and white matter damage in stroke. Similar to PCCs and OPCs, OGD/R produced cell death and was blocked by Tregs and more efficiently by IL-2/IL-2R-treated Tregs, whereas IL-2/IL-2R treatment alone did not alter the ischemic insult. Moreover, the inflammatory marker, TNF-α, was upregulated after OGD/R, dampened by both Tregs and more efficiently by IL-2/IL-2R-treated Tregs but more pronounced in the latter, and not affected by IL-2/IL-2R treatment alone, suggesting IL-2/IL-2R-Treg-mediated modulation of inflammatory response in stroke. Altogether, these observations support the use of IL-2/IL-2R treatment in enhancing the anti-inflammatory effects of Tregs in stroke.

2021 ◽  
Vol 11 ◽  
Author(s):  
Camila Ledo ◽  
Cintia D. Gonzalez ◽  
Ailin Garofalo ◽  
Florencia Sabbione ◽  
Irene A. Keitelman ◽  
...  

The type 1 TNF-α receptor (TNFR1) has a central role in initiating both pro-inflammatory and pro-apoptotic signaling cascades in neutrophils. Considering that TNFR1 signals Staphylococcus aureus protein A (SpA), the aim of this study was to explore the interaction of this bacterial surface protein with neutrophils and keratinocytes to underscore the signaling pathways that may determine the fate of these innate immune cells in the infected tissue during staphylococcal skin infections. Using human neutrophils cultured in vitro and isogenic staphylococcal strains expressing or not protein A, we demonstrated that SpA is a potent inducer of IL-8 in neutrophils and that the induction of this chemokine is dependent on the SpA-TNFR1 interaction and p38 activation. In addition to IL-8, protein A induced the expression of TNF-α and MIP-1α highlighting the importance of SpA in the amplification of the inflammatory response. Protein A contributed to reduce neutrophil mortality prolonging their lifespan upon the encounter with S. aureus. Signaling initiated by SpA modulated the type of neutrophil cell death in vitro and during skin and soft tissue infections (SSTI) in vivo triggering the apoptotic pathway instead of necrosis. Moreover, SpA induced pro-inflammatory cytokines in keratinocytes, modulating their survival in vitro and preventing the exacerbated necrosis and ulceration of the epithelium during SSTI in vivo. Taken together, these results highlight the importance of the inflammatory signaling induced by protein A in neutrophils and skin epithelial cells. The ability of protein A to modulate the neutrophil/epithelial cell death program in the skin is of clinical relevance considering that lysis of neutrophils and epithelial cells will promote an intense inflammatory response and contribute to tissue damage, a non-desirable feature of complicated SSTI.


Author(s):  
Hongli Zhou ◽  
Minyu Zhou ◽  
Yue Hu ◽  
Yanin Limpanon ◽  
Yubin Ma ◽  
...  

AbstractAngiostrongylus cantonensis (AC) can cause severe eosinophilic meningitis or encephalitis in non-permissive hosts accompanied by apoptosis and necroptosis of brain cells. However, the explicit underlying molecular basis of apoptosis and necroptosis upon AC infection has not yet been elucidated. To determine the specific pathways of apoptosis and necroptosis upon AC infection, gene set enrichment analysis (GSEA) and protein–protein interaction (PPI) analysis for gene expression microarray (accession number: GSE159486) of mouse brain infected by AC revealed that TNF-α likely played a central role in the apoptosis and necroptosis in the context of AC infection, which was further confirmed via an in vivo rescue assay after treating with TNF-α inhibitor. The signalling axes involved in apoptosis and necroptosis were investigated via immunoprecipitation and immunoblotting. Immunofluorescence was used to identify the specific cells that underwent apoptosis or necroptosis. The results showed that TNF-α induced apoptosis of astrocytes through the RIP1/FADD/Caspase-8 axis and induced necroptosis of neurons by the RIP3/MLKL signalling pathway. In addition, in vitro assay revealed that TNF-α secretion by microglia increased upon LSA stimulation and caused necroptosis of neurons. The present study provided the first evidence that TNF-α was secreted by microglia stimulated by AC infection, which caused cell death via parallel pathways of astrocyte apoptosis (mediated by the RIP1/FADD/caspase-8 axis) and neuron necroptosis (driven by the RIP3/MLKL complex). Our research comprehensively elucidated the mechanism of cell death after AC infection and provided new insight into targeting TNF-α signalling as a therapeutic strategy for CNS injury.


1994 ◽  
Vol 71 (5) ◽  
pp. 1762-1773 ◽  
Author(s):  
S. N. Hoffman ◽  
P. A. Salin ◽  
D. A. Prince

1. We used an in vitro model to explore critical aspects of chronic epileptogenesis. Partial neocortical isolations having intact blood supply were made in rat and guinea pig from postnatal day 7 to 34 and then examined 1 to 150 days later in standard brain slice preparations. 2. The epileptogenic potential of several different types of lesions was assessed. Slices containing transcortical (i.e., gray matter) lesions, with or without a contiguous white matter injury (i.e., “undercut”), developed chronic epileptogenesis after a latency of approximately 1–2 wk, manifested by evoked and spontaneous “interictal” discharges and evoked “ictal” events. The region of hyperexcitability did not extend beyond approximately 2 mm from the chronic transcortical lesion and was rarely observed in slices having only an apparent white matter injury. 3. Multiple recordings and current source density (CSD) analysis identified layer V as the source of the interictal discharge. 4. Significant differences in CSD profiles of the evoked interictal discharge occurred between chronically epileptogenic slices and control (noninjured) slices bathed in the convulsant, bicuculline methiodide, suggesting that mechanisms other than disinhibition must be involved in posttraumatic epileptogenesis. 5. Interictal events were blocked in most but not all chronically injured slices by application of the N-methyl-D-aspartate (NMDA) receptor antagonist D-2-amino-5-phosphonovalerate (D-AP5), suggesting that non-NMDA receptors were predominantly involved in some preparations. 6. This model of chronic epileptogenesis in vitro will be useful in studies relevant to mechanisms of posttraumatic epilepsy in man.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Dongsun Park ◽  
Kyungha Shin ◽  
Ehn-Kyoung Choi ◽  
Youngjin Choi ◽  
Ja-Young Jang ◽  
...  

Objective. Since oligodendrocyte progenitor cells (OPCs) are the target cells of neonatal hypoxic-ischemic encephalopathy (HIE), the present study was aimed at investigating the protective effects ofN-acetyl-L-cysteine (NAC), a well-known antioxidant and precursor of glutathione, in OPCs as well as in neonatal rats.Methods. Inin vitrostudy, protective effects of NAC on KCN cytotoxicity in F3.Olig2 OPCs were investigated via MTT assay and apoptotic signal analysis. Inin vivostudy, NAC was administered to rats with HIE induced by hypoxia-ischemia surgery at postnatal day 7, and their motor functions and white matter demyelination were analyzed.Results. NAC decreased KCN cytotoxicity in F3.Olig2 cells and especially suppressed apoptosis by regulating Bcl2 and p-ERK. Administration of NAC recovered motor functions such as the using ratio of forelimb contralateral to the injured brain, locomotor activity, and rotarod performance of neonatal HIE animals. It was also confirmed that NAC attenuated demyelination in the corpus callosum, a white matter region vulnerable to HIE.Conclusion. The results indicate that NAC exerts neuroprotective effectsin vitroandin vivoby preserving OPCs, via regulation of antiapoptotic signaling, and that F3.Olig2 human OPCs could be a good tool for screening of candidates for demyelinating diseases.


2020 ◽  
Vol 40 (6) ◽  
Author(s):  
Xudong Wang ◽  
Yali Wang ◽  
Mingjian Kong ◽  
Jianping Yang

Abstract Background: Septic acute kidney injury is considered as a severe and frequent complication that occurs during sepsis. The present study was performed to understand the role of miR-22-3p and its underlying mechanism in sepsis-induced acute kidney injury. Methods: Rats were injected with adenovirus carrying miR-22-3p or miR-NC in the caudal vein before cecal ligation. Meanwhile, HK-2 cells were transfected with the above adenovirus following LPS stimulation. We measured the markers of renal injury (blood urea nitrogen (BUN), serum creatinine (SCR)). Histological changes in kidney tissues were examined by hematoxylin and eosin (H&E), Masson staining, periodic acid Schiff staining and TUNEL staining. The levels of IL-1β, IL-6, TNF-α and NO were determined by ELISA assay. Using TargetScan prediction and luciferase reporter assay, we predicted and validated the association between PTEN and miR-22-3p. Results: Our data showed that miR-22-3p was significantly down-regulated in a rat model of sepsis-induced acute kidney injury, in vivo and LPS-induced sepsis model in HK-2 cells, in vitro. Overexpression of miR-22-3p remarkably suppressed the inflammatory response and apoptosis via down-regulating HMGB1, p-p65, TLR4 and pro-inflammatory factors (IL-1β, IL-6, TNF-α and NO), both in vivo and in vitro. Moreover, PTEN was identified as a target of miR-22-3p. Furthermore, PTEN knockdown augmented, while overexpression reversed the suppressive role of miR-22-3p in LPS-induced inflammatory response. Conclusions: Our results showed that miR-22-3p induced protective role in sepsis-induced acute kidney injury may rely on the repression of PTEN.


2010 ◽  
Vol 6 (4) ◽  
pp. 209-211 ◽  
Author(s):  
R. Douglas Fields

Glutamate toxicity from hypoxia-ischaemia during the perinatal period causes white matter injury that can result in long-term motor and intellectual disability. Blocking ionotropic glutamate receptors (GluRs) has been shown to inhibit oligodendrocyte injury in vitro, but GluR antagonists have not yet proven helpful in clinical studies. The opposite approach of activating GluRs on developing oligodendrocytes shows promise in experimental studies on rodents as reported by Jartzie et al., in this issue. Group I metabotropic glutamate receptors (mGluRs) are expressed transiently on developing oligodendrocytes in humans during the perinatal period, and the blood–brain-barrier permeable agonist of group I mGluRs, 1-aminocyclopentane-trans-1,3-dicarboxylic acid (ACPD), reduces white matter damage significantly in a rat model of perinatal hypoxia-ischaemia. The results suggest drugs activating this class of GluRs could provide a new therapeutic approach for preventing cerebral palsy and other neurological consequences of diffuse white matter injury in premature infants.


Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 227 ◽  
Author(s):  
Maryam Jahanshahi ◽  
David Hamdi ◽  
Brent Godau ◽  
Ehsan Samiei ◽  
Carla Sanchez-Lafuente ◽  
...  

Wound infection is a major clinical challenge that can significantly delay the healing process, can create pain, and requires prolonged hospital stays. Pre-clinical research to evaluate new drugs normally involves animals. However, ethical concerns, cost, and the challenges associated with interspecies variation remain major obstacles. Tissue engineering enables the development of in vitro human skin models for drug testing. However, existing engineered skin models are representative of healthy human skin and its normal functions. This paper presents a functional infected epidermis model that consists of a multilayer epidermis structure formed at an air-liquid interface on a hydrogel matrix and a three-dimensionally (3D) printed vascular-like network. The function of the engineered epidermis is evaluated by the expression of the terminal differentiation marker, filaggrin, and the barrier function of the epidermis model using the electrical resistance and permeability across the epidermal layer. The results showed that the multilayer structure enhances the electrical resistance by 40% and decreased the drug permeation by 16.9% in the epidermis model compared to the monolayer cell culture on gelatin. We infect the model with Escherichia coli to study the inflammatory response of keratinocytes by measuring the expression level of pro-inflammatory cytokines (interleukin 1 beta and tumor necrosis factor alpha). After 24 h of exposure to Escherichia coli, the level of IL-1β and TNF-α in control samples were 125 ± 78 and 920 ± 187 pg/mL respectively, while in infected samples, they were 1429 ± 101 and 2155.5 ± 279 pg/mL respectively. However, in ciprofloxacin-treated samples the levels of IL-1β and TNF-α without significant difference with respect to the control reached to 246 ± 87 and 1141.5 ± 97 pg/mL respectively. The robust fabrication procedure and functionality of this model suggest that the model has great potential for modeling wound infections and drug testing.


2020 ◽  
Vol 29 ◽  
pp. 096368972094609
Author(s):  
Shino Ogawa ◽  
Mutsumi Hagiwara ◽  
Sachiyo Misumi ◽  
Naoki Tajiri ◽  
Takeshi Shimizu ◽  
...  

Preterm infants have a high risk of neonatal white matter injury (WMI) caused by hypoxia-ischemia. Cell-based therapies are promising strategies for neonatal WMI by providing trophic substances and replacing lost cells. Using a rat model of neonatal WMI in which oligodendrocyte progenitors (OPCs) are predominantly damaged, we investigated whether insulin-like growth factor 2 (IGF2) has trophic effects on OPCs in vitro and whether OPC transplantation has potential as a cell replacement therapy. Enhanced expression of Igf2 mRNA was first confirmed in the brain of P5 model rats by real-time polymerase chain reaction. Immunostaining for IGF2 and its receptor IGF2 R revealed that both proteins were co-expressed in OLIG2-positive and GFAP-positive cells in the corpus callosum (CC), indicating autocrine and paracrine effects of IGF2. To investigate the in vitro effect of IGF2 on OPCs, IGF2 (100 ng/ml) was added to the differentiation medium containing ciliary neurotrophic factor (10 ng/ml) and triiodothyronine (20 ng/ml), and IGF2 promoted the differentiation of OPCs into mature oligodendrocytes. We next transplanted rat-derived OPCs that express green fluorescent protein into the CC of neonatal WMI model rats without immunosuppression and investigated the survival of grafted cells for 8 weeks. Although many OPCs survived for at least 8 weeks, the number of mature oligodendrocytes was unexpectedly small in the CC of the model compared with that in the sham-operated control. These findings suggest that the mechanism in the brain that inhibits differentiation should be solved in cell replacement therapy for neonatal WMI as same as trophic support from IGF2.


2020 ◽  
Vol 53 (1) ◽  
Author(s):  
Jintao Gao ◽  
Fangru Chen ◽  
Huanan Fang ◽  
Jing Mi ◽  
Qi Qi ◽  
...  

Abstract Background Psoriasis is a common chronic inflammatory skin disease. Keratinocytes hyperproliferation and excessive inflammatory response contribute to psoriasis pathogenesis. The agents able to attenuate keratinocytes hyperproliferation and excessive inflammatory response are considered to be potentially useful for psoriasis treatment. Daphnetin exhibits broad bioactivities including anti-proliferation and anti-inflammatory. This study aims to evaluate the anti-psoriatic potential of daphnetin in vitro and in vivo, and explore underlying mechanisms. Methods HaCaT keratinocytes was stimulated with the mixture of IL-17A, IL-22, oncostatin M, IL-1α, and TNF-α (M5) to establish psoriatic keratinocyte model in vitro. Cell viability was measured using Cell Counting Kit-8 (CCK-8). Quantitative Real-Time PCR (qRT-PCR) was performed to measure the mRNA levels of hyperproliferative marker gene keratin 6 (KRT6), differentiation marker gene keratin 1 (KRT1) and inflammatory factors IL-1β, IL-6, IL-8, TNF-α, IL-23A and MCP-1. Western blotting was used to detect the protein levels of p65 and p-p65. Indirect immunofluorescence assay (IFA) was carried out to detect p65 nuclear translocation. Imiquimod (IMQ) was used to construct psoriasis-like mouse model. Psoriasis severity (erythema, scaling) was scored based on Psoriasis Area Severity Index (PASI). Hematoxylin and eosin (H&E) staining was performed to examine histological change in skin lesion. The expression of inflammatory factors including IL-6, TNF-α, IL-23A and IL-17A in skin lesion was measured by qRT-PCR. Results Daphnetin attenuated M5-induced hyperproliferation in HaCaT keratinocytes. M5 stimulation significantly upregulated mRNA levels of IL-1β, IL-6, IL-8, TNF-α, IL-23A and MCP-1. However, daphnetin treatment partially attenuated the upregulation of those inflammatory cytokines. Daphnetin was found to be able to inhibit p65 phosphorylation and nuclear translocation in HaCaT keratinocytes. In addition, daphnetin significantly ameliorate the severity of skin lesion (erythema, scaling and epidermal thickness, inflammatory cell infiltration) in IMQ-induced psoriasis-like mouse model. Daphnetin treatment attenuated IMQ-induced upregulation of inflammatory cytokines including IL-6, IL-23A and IL-17A in skin lesion of mice. Conclusions Daphnetin was able to attenuate proliferation and inflammatory response induced by M5 in HaCaT keratinocytes through suppression of NF-κB signaling pathway. Daphnetin could ameliorate the severity of skin lesion and improve inflammation status in IMQ-induced psoriasis-like mouse model. Daphnetin could be an attractive candidate for future development as an anti-psoriatic agent.


Sign in / Sign up

Export Citation Format

Share Document