Ropivacaine Retards the Viability, Migration, and Invasion of Choriocarcinoma Cells by Regulating the Long Noncoding RNA OGFRP1/MicroRNA-4731-5p/HIF3A Axis

Author(s):  
Yaojun Lu ◽  
Chen Yang ◽  
Le Zhang ◽  
Juan Ding
2021 ◽  
Vol 22 (4) ◽  
pp. 1882
Author(s):  
Abdelrahman M. Elsayed ◽  
Emine Bayraktar ◽  
Paola Amero ◽  
Salama A. Salama ◽  
Abdelaziz H. Abdelaziz ◽  
...  

Many long noncoding RNAs have been implicated in tumorigenesis and chemoresistance; however, the underlying mechanisms are not well understood. We investigated the role of PRKAR1B-AS2 long noncoding RNA in ovarian cancer (OC) and chemoresistance and identified potential downstream molecular circuitry underlying its action. Analysis of The Cancer Genome Atlas OC dataset, in vitro experiments, proteomic analysis, and a xenograft OC mouse model were implemented. Our findings indicated that overexpression of PRKAR1B-AS2 is negatively correlated with overall survival in OC patients. Furthermore, PRKAR1B-AS2 knockdown-attenuated proliferation, migration, and invasion of OC cells and ameliorated cisplatin and alpelisib resistance in vitro. In proteomic analysis, silencing PRKAR1B-AS2 markedly inhibited protein expression of PI3K-110α and abrogated the phosphorylation of PDK1, AKT, and mTOR, with no significant effect on PTEN. The RNA immunoprecipitation detected a physical interaction between PRKAR1B-AS2 and PI3K-110α. Moreover, PRKAR1B-AS2 knockdown by systemic administration of 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine nanoparticles loaded with PRKAR1B-AS2–specific small interfering RNA enhanced cisplatin sensitivity in a xenograft OC mouse model. In conclusion, PRKAR1B-AS2 promotes tumor growth and confers chemoresistance by modulating the PI3K/AKT/mTOR pathway. Thus, targeting PRKAR1B-AS2 may represent a novel therapeutic approach for the treatment of OC patients.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yuhua He ◽  
Shuifang Xu ◽  
Yi Qi ◽  
Jinfang Tian ◽  
Fengying Xu

Abstract Background Small nucleolar RNA host gene 25 (SNHG25), a long noncoding RNA, has been well-studied in epithelial ovarian cancer. However, the specific functions of SNHG25 in endometrial cancer (EC) have not been studied yet. In this study, we aimed to elucidate the clinical significance of SNHG25 in EC and determine the regulatory activity of SNHG25 on the tumor-associated EC phenotype. We also thoroughly explored the molecular mechanisms underlying SNHG25 function in EC. Methods Gene expression was measured using quantitative real-time polymerase chain reaction. The detailed functions of SNHG25 in EC were examined by performing loss-of-function experiments. Moreover, the regulatory mechanisms involving SNHG25, microRNA-497-5p, and fatty acid synthase (FASN) were unveiled using the luciferase reporter assay and RNA immunoprecipitation. Results We observed a high level of SNHG25 in EC using the TCGA dataset and our study cohort. Patients with a high SNHG25 level had shorter overall survival than those with a low SNHG25 level. SNHG25 deficiency resulted in tumor-repressing activities in EC cells by decreasing cell proliferation, migration, and invasion and promoting cell apoptosis. Furthermore, the function of SNHG25 depletion in impairing tumor growth in vivo was confirmed. SNHG25 sequestered miR-497-5p as a competing endogenous RNA in EC and consequently positively regulated FASN expression. Thus, the decrease in miR-497-5p or increase in FASN could neutralize the modulatory actions of SNHG25 knockdown in EC cells. Conclusions The depletion of SNHG25 impedes the oncogenicity of EC by targeting the miR-497-5p/FASN axis. The newly elucidated SNHG25/miR-497-5p/FASN pathway may be a promising target for the molecular-targeted management of EC.


2018 ◽  
Vol 49 (6) ◽  
pp. 2511-2520 ◽  
Author(s):  
Zhonghua Zhang ◽  
Xuehai Wang ◽  
Shengda Cao ◽  
Xiao Han ◽  
Zhanwang Wang ◽  
...  

Background/Aims: Researchers have shown that long noncoding RNAs are closely associated with the pathogenesis of laryngeal squamous cell carcinoma (LSCC). However, the role of the long noncoding RNA taurine-upregulated gene 1 (TUG1) in the pathogenesis of LSCC remains unclear, although it is recognized as an oncogenic regulator for several types of squamous cell carcinoma. Methods: qRT-PCR was performed to measure the expression of TUG1 in LSCC tissues and cell lines. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) was used to measure the effect of TUG1 on cell proliferation. Transwell assay and flow cytometry were employed to determine the effect of TUG1 on cell migration and invasion. Western-blot were performed to explore the relation of TUG1 and p53 mRNA. Results: Higher TUG1 expression in LSCC than in paired normal tumor-adjacent tissue specimens (N = 64) was observed using quantitative real-time polymerase chain reaction. Also, high TUG1 expression was positively associated with advanced T category, worse lymph node metastasis and late clinical stage. Furthermore, in vitro experiments demonstrated that silencing of TUG1 markedly inhibited proliferation, cell-cycle progression, migration, and invasion of LSCC cells, whereas depletion of TUG1 led to increased apoptosis. Conclusion: These findings demonstrated that upregulated TUG1 expression exerted oncogenic effects by promoting proliferation, migration, and invasion, and inhibiting apoptosis in LSCC cells.


Sign in / Sign up

Export Citation Format

Share Document