scholarly journals Alterations of Transcription of Genes Coding Anti-oxidative and Mitochondria-Related Proteins in Amyloid β Toxicity: Relevance to Alzheimer’s Disease

2019 ◽  
Vol 57 (3) ◽  
pp. 1374-1388 ◽  
Author(s):  
Magdalena Cieślik ◽  
Grzegorz A. Czapski ◽  
Sylwia Wójtowicz ◽  
Iga Wieczorek ◽  
Przemysław L. Wencel ◽  
...  

AbstractA growing body of evidence indicates that pathological forms of amyloid beta (Aβ) peptide contribute to neuronal degeneration and synaptic loss in Alzheimer’s disease (AD). In this study, we investigated the impact of exogenous Aβ1-42 oligomers (AβO) and endogenously liberated Aβ peptides on transcription of genes for anti-oxidative and mitochondria-related proteins in cell lines (neuronal SH-SY5Y and microglial BV2) and in brain cortex of transgenic AD (Tg-AD) mice, respectively. Our results demonstrated significant AβO-evoked changes in transcription of genes in SH-SY5Y cells, where AβO enhanced expression of Sod1, Cat, mt-Nd1, Bcl2, and attenuated Sirt5, Sod2 and Sdha. In BV2 line, AβO increased the level of mRNA for Sod2, Dnm1l, Bcl2, and decreased for Gpx4, Sirt1, Sirt3, mt-Nd1, Sdha and Mfn2. Then, AβO enhanced free radicals level and impaired mitochondrial membrane potential only in SH-SY5Y cells, but reduced viability of both cell types. Inhibitor of poly(ADP-ribose)polymerase-1 and activator of sirtuin-1 more efficiently enhanced viability of SH-SY5Y than BV2 affected by AβO. Analysis of brain cortex of Tg-AD mice confirmed significant downregulation of Sirt1, Mfn1 and mt-Nd1 and upregulation of Dnm1l. In human AD brain, changes of microRNA pattern (miRNA-9, miRNA-34a, miRNA-146a and miRNA-155) seem to be responsible for decrease in Sirt1 expression. Overall, our results demonstrated a diverse response of neuronal and microglial cells to AβO toxicity. Alterations of genes encoding Sirt1, Mfn1 and Drp1 in an experimental model of AD suggest that modulation of mitochondria dynamics and Sirt1, including miRNA strategy, may be crucial for improvement of AD therapy.

2018 ◽  
Vol 15 (4) ◽  
pp. 313-335 ◽  
Author(s):  
Serena Marcelli ◽  
Massimo Corbo ◽  
Filomena Iannuzzi ◽  
Lucia Negri ◽  
Fabio Blandini ◽  
...  

Background: Alzheimer's disease (AD) is a neurodegenerative disorder recognized as the most common cause of chronic dementia among the ageing population. AD is histopathologically characterized by progressive loss of neurons and deposits of insoluble proteins, primarily composed of amyloid-β pelaques and neurofibrillary tangles (NFTs). Methods: Several molecular processes contribute to the formation of AD cellular hallmarks. Among them, post-translational modifications (PTMs) represent an attractive mechanism underlying the formation of covalent bonds between chemical groups/peptides to target proteins, which ultimately result modified in their function. Most of the proteins related to AD undergo PTMs. Several recent studies show that AD-related proteins like APP, Aβ, tau, BACE1 undergo post-translational modifications. The effect of PTMs contributes to the normal function of cells, although aberrant protein modification, which may depend on many factors, can drive the onset or support the development of AD. Results: Here we will discuss the effect of several PTMs on the functionality of AD-related proteins potentially contributing to the development of AD pathology. Conclusion: We will consider the role of Ubiquitination, Phosphorylation, SUMOylation, Acetylation and Nitrosylation on specific AD-related proteins and, more interestingly, the possible interactions that may occur between such different PTMs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anna A. Lauer ◽  
Daniel Janitschke ◽  
Malena dos Santos Guilherme ◽  
Vu Thu Thuy Nguyen ◽  
Cornel M. Bachmann ◽  
...  

AbstractAlzheimer’s disease (AD) is a very frequent neurodegenerative disorder characterized by an accumulation of amyloid-β (Aβ). Acitretin, a retinoid-derivative and approved treatment for Psoriasis vulgaris, increases non-amyloidogenic Amyloid-Precursor-Protein-(APP)-processing, prevents Aβ-production and elicits cognitive improvement in AD mouse models. As an unintended side effect, acitretin could result in hyperlipidemia. Here, we analyzed the impact of acitretin on the lipidome in brain and liver tissue in the 5xFAD mouse-model. In line with literature, triglycerides were increased in liver accompanied by increased PCaa, plasmalogens and acyl-carnitines, whereas SM-species were decreased. In brain, these effects were partially enhanced or similar but also inverted. While for SM and plasmalogens similar effects were found, PCaa, TAG and acyl-carnitines showed an inverse effect in both tissues. Our findings emphasize, that potential pharmaceuticals to treat AD should be carefully monitored with respect to lipid-homeostasis because APP-processing itself modulates lipid-metabolism and medication might result in further and unexpected changes. Moreover, deducing effects of brain lipid-homeostasis from results obtained for other tissues should be considered cautiously. With respect to acitretin, the increase in brain plasmalogens might display a further positive probability in AD-treatment, while other results, such as decreased SM, indicate the need of medical surveillance for treated patients.


2021 ◽  
Vol 22 (22) ◽  
pp. 12181
Author(s):  
Guido Santos ◽  
Mario Díaz

Alzheimer’s disease (AD) is a neurodegenerative disease caused by abnormal functioning of critical physiological processes in nerve cells and aberrant accumulation of protein aggregates in the brain. The initial cause remains elusive—the only unquestionable risk factor for the most frequent variant of the disease is age. Lipid rafts are microdomains present in nerve cell membranes and they are known to play a significant role in the generation of hallmark proteinopathies associated to AD, namely senile plaques, formed by aggregates of amyloid β peptides. Recent studies have demonstrated that human brain cortex lipid rafts are altered during early neuropathological phases of AD as defined by Braak and Braak staging. The lipid composition and physical properties of these domains appear altered even before clinical symptoms are detected. Here, we use a coarse grain molecular dynamics mathematical model to predict the dimensional evolution of these domains using the experimental data reported by our group in human frontal cortex. The model predicts significant size and frequency changes which are detectable at the earliest neuropathological stage (ADI/II) of Alzheimer’s disease. Simulations reveal a lower number and a larger size in lipid rafts from ADV/VI, the most advanced stage of AD. Paralleling these changes, the predictions also indicate that non-rafts domains undergo simultaneous alterations in membrane peroxidability, which support a link between oxidative stress and AD progression. These synergistic changes in lipid rafts dimensions and non-rafts peroxidability are likely to become part of a positive feedback loop linked to an irreversible amyloid burden and neuronal death during the evolution of AD neuropathology.


2020 ◽  
Author(s):  
Sarah R Ball ◽  
Julius S P Adamson ◽  
Michael A Sullivan ◽  
Manuela R Zimmermann ◽  
Victor Lo ◽  
...  

AbstractThe amyloid-β peptide, the main protein component of amyloid plaques in Alzheimer’s disease, plays a key role in the neurotoxicity associated with the condition through the formation of small toxic oligomer species which mediate the disruption of calcium and glutamate homeostasis. The lack of therapeutic benefit associated with removal of mature amyloid-β fibrils has focused attention on the toxic oligomeric species formed during the process of fibril assembly. Here, we present the design and synthesis of a family of perphenazine-macrocyle conjugates. We find that two-armed perphenazine-cyclam conjugates divert the monomeric form of the amyloid-β peptide away from the amyloidogenic pathway into amorphous aggregates that are not toxic to differentiated SH-SY5Y cells in vitro. This strategy prevents the formation of damaging amyloid oligomers. Kinetic analysis of the effects of these compounds on the assembly pathway, together with NMR spectroscopy, identifies rapid monomer sequestration as the underlying neuroprotective mechanism. The ability to specifically target the monomeric form of amyloid-β allows for further understanding of the impact of the multiple species formed between peptide biogenesis and plaque deposition. The modular, three-dimensional structure of these compounds provides a starting point for the design of more potent modulators of this amyloid-forming peptide, and can be adapted to probe the protein self-assembly pathways associated with other proteinopathies.Significance statementThe aggregation pathway of the amyloid-β (Aβ) peptide in Alzheimer’s disease is complex and involves multiple different species. An inability to isolate and study the impact of distinct Aβ species has undermined efforts to develop effective therapies. To address this issue, we have developed a series of molecules that specifically sequester the monomeric form of the highly aggregation-prone Aβ42 peptide. Interaction with these molecules diverts Aβ42 from the amyloidogenic pathway and prevents formation of toxic oligomeric species. We use kinetic analysis and NMR spectroscopy to identify rapid monomer sequestration as the underlying neuroprotective mechanism. Future rational development of these molecules and characterisation of their interactions with Aβ will delineate the impact of different Aβ oligomers on neurobiology and pathology.


Gut ◽  
2019 ◽  
Vol 69 (2) ◽  
pp. 283-294 ◽  
Author(s):  
Min-Soo Kim ◽  
Yoonhee Kim ◽  
Hyunjung Choi ◽  
Woojin Kim ◽  
Sumyung Park ◽  
...  

ObjectiveCerebral amyloidosis and severe tauopathy in the brain are key pathological features of Alzheimer’s disease (AD). Despite a strong influence of the intestinal microbiota on AD, the causal relationship between the gut microbiota and AD pathophysiology is still elusive.DesignUsing a recently developed AD-like pathology with amyloid and neurofibrillary tangles (ADLPAPT) transgenic mouse model of AD, which shows amyloid plaques, neurofibrillary tangles and reactive gliosis in their brains along with memory deficits, we examined the impact of the gut microbiota on AD pathogenesis.ResultsComposition of the gut microbiota in ADLPAPT mice differed from that of healthy wild-type (WT) mice. Besides, ADLPAPT mice showed a loss of epithelial barrier integrity and chronic intestinal and systemic inflammation. Both frequent transfer and transplantation of the faecal microbiota from WT mice into ADLPAPT mice ameliorated the formation of amyloid β plaques and neurofibrillary tangles, glial reactivity and cognitive impairment. Additionally, the faecal microbiota transfer reversed abnormalities in the colonic expression of genes related to intestinal macrophage activity and the circulating blood inflammatory monocytes in the ADLPAPT recipient mice.ConclusionThese results indicate that microbiota-mediated intestinal and systemic immune aberrations contribute to the pathogenesis of AD in ADLPAPT mice, providing new insights into the relationship between the gut (colonic gene expression, gut permeability), blood (blood immune cell population) and brain (pathology) axis and AD (memory deficits). Thus, restoring gut microbial homeostasis may have beneficial effects on AD treatment.


2020 ◽  
Vol 21 (12) ◽  
pp. 4443
Author(s):  
Hiroyuki Shimada ◽  
Shinobu Minatani ◽  
Jun Takeuchi ◽  
Akitoshi Takeda ◽  
Joji Kawabe ◽  
...  

We previously identified a novel mutation in amyloid precursor protein from a Japanese pedigree of familial Alzheimer’s disease, FAD (Osaka). Our previous positron emission tomography (PET) study revealed that amyloid β (Aβ) accumulation was negligible in two sister cases of this pedigree, indicating a possibility that this mutation induces dementia without forming senile plaques. To further explore the relationship between Aβ, tau and neurodegeneration, we performed tau and Aβ PET imaging in the proband of FAD (Osaka) and in patients with sporadic Alzheimer’s disease (SAD) and healthy controls (HCs). The FAD (Osaka) patient showed higher uptake of tau PET tracer in the frontal, lateral temporal, and parietal cortices, posterior cingulate gyrus and precuneus than the HCs (>2.5 SD) and in the lateral temporal and parietal cortices than the SAD patients (>2 SD). Most noticeably, heavy tau tracer accumulation in the cerebellum was found only in the FAD (Osaka) patient. Scatter plot analysis of the two tracers revealed that FAD (Osaka) exhibits a distinguishing pattern with a heavy tau burden and subtle Aβ accumulation in the cerebral cortex and cerebellum. These observations support our hypothesis that Aβ can induce tau accumulation and neuronal degeneration without forming senile plaques.


2020 ◽  
Vol 78 (2) ◽  
pp. 573-585
Author(s):  
Hyemin Jang ◽  
Hee Jin Kim ◽  
Yeong Sim Choe ◽  
Soo-Jong Kim ◽  
Seongbeom Park ◽  
...  

Background: As Alzheimer’s disease (AD) and cerebral small vessel disease (CSVD) commonly coexist, the interaction between two has been of the considerable interest. Objective: We determined whether the association of Aβ and tau with cognitive decline differs by the presence of significant CSVD. Methods: We included 60 subcortical vascular cognitive impairment (SVCI) from Samsung Medical Center and 82 Alzheimer’s disease-related cognitive impairment (ADCI) from ADNI, who underwent Aβ (florbetaben or florbetapir) and tau (flortaucipir, FTP) PET imaging. They were retrospectively assessed for 5.0±3.9 and 5.6±1.9 years with Clinical Dementia Rating-sum of boxes (CDR-SB)/Mini-Mental State Examination (MMSE). Mixed effects models were used to investigate the interaction between Aβ/tau and group on CDR-SB/MMSE changes. Results: The frequency of Aβ positivity (45% versus 54.9%, p = 0.556) and mean global FTP SUVR (1.17±0.21 versus 1.16±0.17, p = 0.702) were not different between the two groups. We found a significant interaction effect of Aβ positivity and SVCI group on CDR-SB increase/MMSE decrease (p = 0.013/p < 0.001), and a significant interaction effect of global FTP uptake and SVCI group on CDR-SB increase/MMSE decrease (p < 0.001 and p = 0.030). Finally, the interaction effects of regional tau and group were prominent in the Braak III/IV (p = 0.001) and V/VI (p = 0.003) not in Braak I/II region (p = 0.398). Conclusion: The association between Aβ/tau and cognitive decline is stronger in SVCI than in ADCI. Therefore, our findings suggested that Aβ positivity or tau burden (particularly in the Braak III/IV or V/VI regions) and CSVD might synergistically affect cognitive decline.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Devrim Kilinc ◽  
Anaïs-Camille Vreulx ◽  
Tiago Mendes ◽  
Amandine Flaig ◽  
Diego Marques-Coelho ◽  
...  

Abstract Recent meta-analyses of genome-wide association studies identified a number of genetic risk factors of Alzheimer’s disease; however, little is known about the mechanisms by which they contribute to the pathological process. As synapse loss is observed at the earliest stage of Alzheimer’s disease, deciphering the impact of Alzheimer’s risk genes on synapse formation and maintenance is of great interest. In this article, we report a microfluidic co-culture device that physically isolates synapses from pre- and postsynaptic neurons and chronically exposes them to toxic amyloid β peptides secreted by model cell lines overexpressing wild-type or mutated (V717I) amyloid precursor protein. Co-culture with cells overexpressing mutated amyloid precursor protein exposed the synapses of primary hippocampal neurons to amyloid β1–42 molecules at nanomolar concentrations and induced a significant decrease in synaptic connectivity, as evidenced by distance-based assignment of postsynaptic puncta to presynaptic puncta. Treating the cells with antibodies that target different forms of amyloid β suggested that low molecular weight oligomers are the likely culprit. As proof of concept, we demonstrate that overexpression of protein tyrosine kinase 2 beta—an Alzheimer’s disease genetic risk factor involved in synaptic plasticity and shown to decrease in Alzheimer’s disease brains at gene expression and protein levels—selectively in postsynaptic neurons is protective against amyloid β1–42-induced synaptotoxicity. In summary, our lab-on-a-chip device provides a physiologically relevant model of Alzheimer’s disease-related synaptotoxicity, optimal for assessing the impact of risk genes in pre- and postsynaptic compartments.


CNS Spectrums ◽  
2010 ◽  
Vol 15 (S1) ◽  
pp. 7-7 ◽  
Author(s):  
Jeffrey L Cummings

Drs. McCaddon and Hudson provide a thorough review of the multiple ways in which vitamin B12, vitamin B6, folate, and homocysteine (Hey) are implicated in the pathogenesis of Alzheimer's disease (AD). They noted that Hey is more often elevated in AD and in mild cognitive impairment (MCI) than in cognitively healthy elderly; phosphatases needed to limit tau hyperphosphoryalation and neurofibrillary tangle formation require methylation and are dependent on folate and methylation status; cerebrospinal fluid (CSF) tau levels correlated with markers of methylation status; reduced folate and B12 levels lead to increase β-secretase and pesenilin 1 (PS1) actions leading to greater amyloid-β production in in vitro models; elevated Hey levels in rates are associated with increased PS1 activity and spatial memory deficits that are reversed following treatment with B12 and folate; raised Hey levels in vitro increase amyloid-β protein neurotoxicity; methylation impacts transmitters and transmitter function relevant to AD; in cultured neurons, Hey induces injury in DNA and stimulates cell death pathways. B12 deficiency leads to accumulation of methyl malonic acid, which inhibits mitochondrial function and may compromise energy generation and impair maintenance of synaptic plasticity. Methylation abnormalities result in excessive generation of reactive oxygen species that contribute importantly to cell injury. Biomarkers of oxidative injury, such as isoprostanes, are elevated in AD and suggest excess oxidation. Thus, there are multiple pathways through which deficient methylation may contribute to AD. In some cases, the observations are derived from models with B12 or folate deficiency and some in vitro observations have not been tested in in vivo models. There are no biomarkers specific to some of the pathways implicated and the magnitude of the impact of the deficiency or its treatment has not been established for all the relationships. Two open-label experiments in early- and late-stage AD patients have suggested benefit.


2021 ◽  
Vol 13 ◽  
Author(s):  
Audrey Hector ◽  
Jonathan Brouillette

Soluble amyloid-beta oligomers (Aβo) start to accumulate in the human brain one to two decades before any clinical symptoms of Alzheimer's disease (AD) and are implicated in synapse loss, one of the best predictors of memory decline that characterize the illness. Cognitive impairment in AD was traditionally thought to result from a reduction in synaptic activity which ultimately induces neurodegeneration. More recent evidence indicates that in the early stages of AD synaptic failure is, at least partly, induced by neuronal hyperactivity rather than hypoactivity. Here, we review the growing body of evidence supporting the implication of soluble Aβo on the induction of neuronal hyperactivity in AD animal models, in vitro, and in humans. We then discuss the impact of Aβo-induced hyperactivity on memory performance, cell death, epileptiform activity, gamma oscillations, and slow wave activity. We provide an overview of the cellular and molecular mechanisms that are emerging to explain how Aβo induce neuronal hyperactivity. We conclude by providing an outlook on the impact of hyperactivity for the development of disease-modifying interventions at the onset of AD.


Sign in / Sign up

Export Citation Format

Share Document