Highly sensitive infrared polarized photodetector enabled by out-of-plane PSN architecture composing of p-MoTe2, semimetal-MoTe2 and n-SnSe2

Nano Research ◽  
2021 ◽  
Author(s):  
Yiming Sun ◽  
Jingxian Xiong ◽  
Xuming Wu ◽  
Wei Gao ◽  
Nengjie Huo ◽  
...  
2021 ◽  
Vol 11 (8) ◽  
pp. 3655
Author(s):  
Gee-Soo Lee ◽  
Chan-Jung Kim

Microcracks of depth less than 200 μm in mechanical components are difficult to detect because conventional methods such as X-ray or eddy current measurements are less sensitive to such depths. Nonetheless, an efficient microcrack detection method is required urgently in the mechanical industry because microcracks are produced frequently during cold-forming. The frequency response function (FRF) is known to be highly sensitive even to microcracks, and it can be obtained using both the input data of an impact hammer and the response data of an accelerometer. Under the assumption of an impulse force with a similar spectral impulse pattern, spectral response data alone could be used as a crack indicator because the dynamic characteristics of a microcrack may be dependent solely on these measured data. This study investigates the feasibility of microcrack detection using the response data alone through impact tests with a simple rectangular specimen. A simple rectangular specimen with a 200 μm microcrack at one face was prepared. The experimental modal analysis was conducted for the normal (uncracked) specimen and found-first bending mode about 1090 Hz at the X-Y plane (in-plane). Response accelerations were obtained in both at in-plane locations as well as X-Z plane (out-of-plane), and the crack was detected using the coherence function between a normal and a cracked specimen. A comparison of the crack inspection results obtained using the response data and the FRF data indicated the validity of the proposed method.


Buildings ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 146 ◽  
Author(s):  
Jan Niederwestberg ◽  
Jianhui Zhou ◽  
Ying-Hei Chui

The lay-up of cross laminated timber (CLT) leads to significant differences in properties over its cross-section. Particularly the out-of-plane shear behavior of CLT is affected by the changes in shear moduli over the cross-section. Results from laboratory shear tests are used to evaluate the shear stiffness of 3- and 5-layer CLT panels in their major and minor strength direction. The results are compared to calculated shear stiffness values on evaluated single-layer properties as well as commonly used property ratios using the Timoshenko beam theory and the shear analogy method. Differences between the two calculation approaches are pointed out. The shear stiffness is highly sensitive to the ratio of the shear modulus parallel to the grain to the shear modulus perpendicular to the grain. The stiffness values determined from two test measurements are compared with the calculated results. The level of agreement is dependent on the number of layers in CLT and the property axis of the CLT panels.


Author(s):  
Min Miao ◽  
Qifang Hu ◽  
Yilong Hao ◽  
Haifeng Dong ◽  
Haixia Zhang

A bulk micromachined tunneling accelerometer on Pyrex 7740 substrate is reported in this paper, which is intended for the applications in highly sensitive inertia measurements, such as those in microgravity environments and self-contained navigation. The tunneling tip is defined by an isotropic wet etching followed by a maskless wet thermal oxidation for the sharpening of the tip. Unlike the process ever reported by other facilities, an ICP etching on the side of the Si wafer with the tip is utilized to partially define the suspension and the proof mass before the anodic bonding of the Si wafer with the glass substrate, and an addition maskless ICP etching is used to release the whole movable structure after the bonding. Fabricated samples have displayed the effectiveness of the process proposed, which is relatively simple and may guarantee the yield of mass production. The theoretical analysis and design of the closed loop architecture of the device are demonstrated. Capable of sensing out-of-plane acceleration, this device has demonstrated a high resolution of 0.015mg/rtHz (@ 1∼100Hz) and a nonlinearity of less than 1% over ±1g input range.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sofiane Ben Mbarek ◽  
Nouha Alcheikh ◽  
Hassen M. Ouakad ◽  
Mohammad I. Younis

AbstractWe present a highly sensitive Lorentz-force magnetic micro-sensor capable of measuring low field values. The magnetometer consists of a silicon micro-beam sandwiched between two electrodes to electrostatically induce in-plane vibration and to detect the output current. The method is based on measuring the resonance frequency of the micro-beam around the buckling zone to sense out-of-plane magnetic fields. When biased with a current of 0.91 mA (around buckling), the device has a measured sensitivity of 11.6 T−1, which is five orders of magnitude larger than the state-of-the-art. The measured minimum detectable magnetic field and the estimated resolution of the proposed magnetic sensor are 100 µT and 13.6 µT.Hz−1/2, respectively. An analytical model is developed based on the Euler–Bernoulli beam theory and the Galerkin discretization to understand and verify the micro-sensor performance. Good agreement is shown between analytical results and experimental data. Furthermore, the presented magnetometer is promising for measuring very weak biomagnetic fields.


Author(s):  
Jan Niederwestberg ◽  
Jianhui Zhou ◽  
Ying-Hei Chui

The lay-up of cross laminated timber (CLT) leads to significant differences in properties over its cross-section. Particularly the out-of-plane shear behavior of CLT is effected by the changes in shear moduli over the cross-section. Results from laboratory shear tests are used to evaluate the shear stiffness of 3- and 5-layer CLT panels in their major and minor strength direction. The results are compared to calculated shear stiffness values on evaluated single-layer properties as well as commonly used property ratios using the Timoshenko beam theory and the shear analogy method. Differences between the two calculation approaches are pointed out. The shear stiffness is highly sensitive to the ratio of the shear modulus parallel to the grain to the shear modulus perpendicular to the grain. The stiffness values determined from two test measurements are compared with the calculated results. The level of agreement is dependent on the number of layers in CLT and the property axis of the CLT panels.


Author(s):  
Ashwin Vyas ◽  
Anil K. Bajaj ◽  
Dimitrios Peroulis

We explore the use of a pedal shaped nonlinear microresonator designed with torsion and flexural modes in 1:2 internal resonance for mass sensing. The higher natural frequency in-plane flexural mode of the resonator is coupled nonlinearly through inertial coupling to the out-of-plane torsional mode with one-half natural frequency. When the flexural mode excited resonantly has response above a threshold, the torsional mode is excited. This response in torsional mode is highly sensitive to any mass perturbation that results in mistuning the two modes away from 1:2 resonance. The mistuning can drastically change the nonlinearly excited torsional response from non-zero amplitude to zero amplitude. The required increase in the actuation strength to reactivate the torsional motion can serve as a measure for the attached mass.


Author(s):  
T. M. Seed ◽  
M. H. Sanderson ◽  
D. L. Gutzeit ◽  
T. E. Fritz ◽  
D. V. Tolle ◽  
...  

The developing mammalian fetus is thought to be highly sensitive to ionizing radiation. However, dose, dose-rate relationships are not well established, especially the long term effects of protracted, low-dose exposure. A previous report (1) has indicated that bred beagle bitches exposed to daily doses of 5 to 35 R 60Co gamma rays throughout gestation can produce viable, seemingly normal offspring. Puppies irradiated in utero are distinguishable from controls only by their smaller size, dental abnormalities, and, in adulthood, by their inability to bear young.We report here our preliminary microscopic evaluation of ovarian pathology in young pups continuously irradiated throughout gestation at daily (22 h/day) dose rates of either 0.4, 1.0, 2.5, or 5.0 R/day of gamma rays from an attenuated 60Co source. Pups from non-irradiated bitches served as controls. Experimental animals were evaluated clinically and hematologically (control + 5.0 R/day pups) at regular intervals.


Author(s):  
R. Y. Tsien ◽  
A. Minta ◽  
M. Poenie ◽  
J.P.Y. Kao ◽  
A. Harootunian

Recent technical advances now enable the continuous imaging of important ionic signals inside individual living cells with micron spatial resolution and subsecond time resolution. This methodology relies on the molecular engineering of indicator dyes whose fluorescence is strong and highly sensitive to ions such as Ca2+, H+, or Na+, or Mg2+. The Ca2+ indicators, exemplified by fura-2 and indo-1, derive their high affinity (Kd near 200 nM) and selectivity for Ca2+ to a versatile tetracarboxylate binding site3 modeled on and isosteric with the well known chelator EGTA. The most commonly used pH indicators are fluorescein dyes (such as BCECF) modified to adjust their pKa's and improve their retention inside cells. Na+ indicators are crown ethers with cavity sizes chosen to select Na+ over K+: Mg2+ indicators use tricarboxylate binding sites truncated from those of the Ca2+ chelators, resulting in a more compact arrangement of carboxylates to suit the smaller ion.


Author(s):  
C. Boulesteix ◽  
C. Colliex ◽  
C. Mory ◽  
B. Pardo ◽  
D. Renard

Contrast mechanisms, which are responsible of the various types of image formation, are generally thickness dependant. In the following, two imaging modes in the 100 kV CTEM are described : they are highly sensitive to thickness variations and can be used for quantitative estimations of step heights.Detailed calculations (1) of the bright-field intensity have been carried out in the 3 (or 2N+l)-beam symmetric case. They show that in given conditions, the two important symmetric Bloch waves interfere most strongly at a critical thickness for which they have equal emergent amplitudes (the more excited wave at the entrance surface is also the more absorbed). The transmitted intensity I for a Nd2O3 specimen has been calculated as a function of thickness t. The capacity of the method to detect a step and measure its height can be more clearly deduced from a plot of dl/Idt as shown in fig. 1.


Author(s):  
T. Oikawa ◽  
N. Mori ◽  
T. Katoh ◽  
Y. Harada ◽  
J. Miyahara ◽  
...  

The “Imaging Plate”(IP) is a highly sensitive image recording plate for X-ray radiography. It has been ascertained that the IP has superior properties and high practicability as an image recording material in a TEM. The sensitivity, one of the properties, is about 3 orders higher than that of conventional photo film. The IP is expected to be applied to low dose techniques. In this paper, an estimation of the quantum noise on the TEM image which appears in case of low electron dose on the IP is reported.In this experiment, the JEM-2000FX TEM and an IP having the same size as photo film were used.Figure 1 shows the schematic diagram of the total system including the TEM used in this experiment. In the reader, He-Ne laser light is scanned across the IP, then blue light is emitted from the IP.


Sign in / Sign up

Export Citation Format

Share Document