Bacterial communities in the initial stage of marine biofilm formation on artificial surfaces

2008 ◽  
Vol 46 (2) ◽  
pp. 174-182 ◽  
Author(s):  
Jin-Woo Lee ◽  
Ji-Hyun Nam ◽  
Yang-Hoon Kim ◽  
Kyu-Ho Lee ◽  
Dong-Hun Lee
2017 ◽  
Vol 199 (18) ◽  
Author(s):  
Reed M. Stubbendieck ◽  
Paul D. Straight

ABSTRACT Bacteria use two-component signaling systems to adapt and respond to their competitors and changing environments. For instance, competitor bacteria may produce antibiotics and other bioactive metabolites and sequester nutrients. To survive, some species of bacteria escape competition through antibiotic production, biofilm formation, or motility. Specialized metabolite production and biofilm formation are relatively well understood for bacterial species in isolation. How bacteria control these functions when competitors are present is not well studied. To address fundamental questions relating to the competitive mechanisms of different species, we have developed a model system using two species of soil bacteria, Bacillus subtilis and Streptomyces sp. strain Mg1. Using this model, we previously found that linearmycins produced by Streptomyces sp. strain Mg1 cause lysis of B. subtilis cells and degradation of colony matrix. We identified strains of B. subtilis with mutations in the two-component signaling system yfiJK operon that confer dual phenotypes of specific linearmycin resistance and biofilm morphology. We determined that expression of the ATP-binding cassette (ABC) transporter yfiLMN operon, particularly yfiM and yfiN, is necessary for biofilm morphology. Using transposon mutagenesis, we identified genes that are required for YfiLMN-mediated biofilm morphology, including several chaperones. Using transcriptional fusions, we found that YfiJ signaling is activated by linearmycins and other polyene metabolites. Finally, using a truncated YfiJ, we show that YfiJ requires its transmembrane domain to activate downstream signaling. Taken together, these results suggest coordinated dual antibiotic resistance and biofilm morphology by a single multifunctional ABC transporter promotes competitive fitness of B. subtilis. IMPORTANCE DNA sequencing approaches have revealed hitherto unexplored diversity of bacterial species in a wide variety of environments that includes the gastrointestinal tract of animals and the rhizosphere of plants. Interactions between different species in bacterial communities have impacts on our health and industry. However, many approaches currently used to study whole bacterial communities do not resolve mechanistic details of interspecies interactions, including how bacteria sense and respond to their competitors. Using a competition model, we have uncovered dual functions for a previously uncharacterized two-component signaling system involved in specific antibiotic resistance and biofilm morphology. Insights gleaned from signaling within interspecies interaction models build a more complete understanding of gene functions important for bacterial communities and will enhance community-level analytical approaches.


2019 ◽  
Vol 7 (8) ◽  
pp. 236
Author(s):  
Karampoula ◽  
Doulgeraki ◽  
Fotiadis ◽  
Tampakaki ◽  
Nychas

The present study aims to monitor the ability of Salmonella to colonize and compete as a member of the mixed species biofilm within key points at a water bottling plant, in case of a contamination incident with this major foodborne pathogen. To achieve this goal, bacterial communities throughout the production line were collected and their identities were investigated by microbial counts and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). These bacterial communities alone or along with constructed Salmonella enterica serovar Typhimurium (ST) fluorescence-based bioreporters were left to form a biofilm on stainless steel for 6 days at 20 °C. ST bioreporters were constructed by introducing plasmids expressing EYFP (enhanced yellow fluorescent protein) fusions of the genes csgB, csrA, sspH2, and fliD into ST 14028S. The bead vortexing-plate counting method was applied for the enumeration of the biofilm population, while the behavior of the bioreporters was evaluated by fluorescence microscopy. From a set of 16 samples that were collected from the plant, species of Citrobacter, Staphylococcus, Pseudomonas, Bacillus, and Exiguobacterium were identified. The presence of these indigenous bacteria neither inhibited nor enhanced the biofilm formation of ST in mixed bacterial communities (p > 0.05). Furthermore, the csrA-based bioreporter was shown to be induced in multispecies biofilms with Citrobacter. In conclusion, this study enhanced our knowledge of bacterial interactions occurring within a biofilm in a water bottling plant.


2009 ◽  
Vol 53 (10) ◽  
pp. 4357-4367 ◽  
Author(s):  
Timothy J. Opperman ◽  
Steven M. Kwasny ◽  
John D. Williams ◽  
Atiyya R. Khan ◽  
Norton P. Peet ◽  
...  

ABSTRACT Staphylococcus epidermidis and Staphylococcus aureus are the leading causative agents of indwelling medical device infections because of their ability to form biofilms on artificial surfaces. Here we describe the antibiofilm activity of a class of small molecules, the aryl rhodanines, which specifically inhibit biofilm formation of S. aureus, S. epidermidis, Enterococcus faecalis, E. faecium, and E. gallinarum but not the gram-negative species Pseudomonas aeruginosa or Escherichia coli. The aryl rhodanines do not exhibit antibacterial activity against any of the bacterial strains tested and are not cytotoxic against HeLa cells. Preliminary mechanism-of-action studies revealed that the aryl rhodanines specifically inhibit the early stages of biofilm development by preventing attachment of the bacteria to surfaces.


2001 ◽  
Vol 69 (5) ◽  
pp. 3423-3426 ◽  
Author(s):  
Matthias Gross ◽  
Sarah E. Cramton ◽  
Friedrich Götz ◽  
Andreas Peschel

ABSTRACT Staphylococcus aureus is responsible for a large percentage of infections associated with implanted biomedical devices. The molecular basis of primary adhesion to artificial surfaces is not yet understood. Here, we demonstrate that teichoic acids, highly charged cell wall polymers, play a key role in the first step of biofilm formation. An S. aureus mutant bearing a stronger negative surface charge due to the lack ofd-alanine esters in its teichoic acids can no longer colonize polystyrene or glass. The mutation abrogates primary adhesion to plastic while production of the glucosamine-based polymer involved in later steps of biofilm formation is not affected. Our data suggest that repulsive electrostatic forces can lead to reduced staphylococcal biofilm formation, which could have considerable impact on the design of novel implanted materials.


Author(s):  
Sofia López Pérez ◽  
Sven Zea ◽  
Javier Gómez

Biofilm formation is an important process for marine bacterial communities because this mechanism favors adaptation to variations in environmental conditions. The objective of this study was to evaluate the biofilm formation of bacteria isolated from marine sediments under in vitro conditions. For this, biofilm quantification assays were performed using two methods, violet crystal and reduction of the XTT dye; In addition, the viability of the bacteria was evaluated by Live / Dead staining. Subsequently, the strains evaluated were identified using the 16S RNA marker. The results showed that the isolates belong to the genus Bacillus, all in different ranges were able to form filmsand strains B. safensis 64181 and Bacillus sp 64186 were selected which indicated greater production of this. Tests at different temperatures showed that for the strains selected the best temperature was 28 ° C. In addition, a mixed culture was carried out with these isolates, resultingin differences in the density of the biofilm and less changes in its metabolic activity in temperature variation experiments. From the results we can infer that bacterial consortiums can favor resistance to environmental variations in biofilms formed by bacteria of the genus Bacillus.


2021 ◽  
Author(s):  
So Fujiyoshi ◽  
Yukiko Nishiuchi ◽  
Fumito Maruyama

Showers are one of the main exposure routes to diverse microbes for end users in built environments. Bacteria in water are responsible for biofilm formation on surfaces, and the inside of a showerhead is a specific niche. Here, for the purpose of microbial characterization, source estimation and possibility of infection, the bacterial compositions of both shower water and showerhead biofilms in the same bathroom were determined and compared using a portable nanopore sequencer. The results suggest that specific bacteria in source water would primarily adhere to the surface of the showerhead where they subsequently form biofilms, and the community compositions within biofilms largely vary depending on environmental factors. The relative abundance of several pathogenic bacterial genera in both water and biofilm samples was low. We suggest that it is important to manage risk of infection in each household, and rapid on-site analysis of microbial communities will allow the realization.


2020 ◽  
Author(s):  
Magdalena Rajewska ◽  
Marta Matuszewska ◽  
Sylwia Jafra

<p>The ability to colonize different environmental niches by bacteria is most often determined by the ability to form biofilms - complex, multicellular communities. This, in turn, depends on both cellular and extracellular factors such as genetic background of the strain, type of surface (biotic or abiotic) to which bacteria attach, availability of nutrients, temperature, <em>etc</em>. <em>Pseudomonas donghuensis</em> P482 strain is a little-known isolate from tomato rhizosphere, exhibiting antimicrobial activity towards bacterial and fungal plant pathogens. Studies have shown that it efficiently colonizes plant rhizosphere and forms biofilm on artificial surfaces. Which genetic or environmental factors underlie the mechanism of biofilm formation were yet to be elucidated. The presented research aimed at identifying those factors. Basing on the analysis of genome, knock-out mutants of the P482 strain were constructed in the genes potentially involved in biofilm formation and further analyzed for motility, colony morphology, attachment to artificial surfaces in different culture conditions, and colonization of maize and tomato rhizosphere.</p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hellen Braga Martins Oliveira ◽  
Nathan das Neves Selis ◽  
Beatriz Almeida Sampaio ◽  
Manoel Neres Santos Júnior ◽  
Suzi Pacheco de Carvalho ◽  
...  

AbstractMethicillin-resistant Staphylococcus aureus (MRSA) is responsible for high morbidity and mortality rates. Citral has been studied in the pharmaceutical industry and has shown antimicrobial activity. This study aimed to analyze the antimicrobial activity of citral in inhibiting biofilm formation and modulating virulence genes, with the ultimate goal of finding a strategy for treating infections caused by MRSA strains. Citral showed antimicrobial activity against MRSA isolates with minimum inhibitory concentration (MIC) values between 5 mg/mL (0.5%) and 40 mg/mL (4%), and minimum bactericidal concentration (MBC) values between 10 mg/mL (1%) and 40 mg/mL (4%). The sub-inhibitory dose was 2.5 mg/mL (0.25%). Citral, in an antibiogram, modulated synergistically, antagonistically, or indifferent to the different antibiotics tested. Prior to evaluating the antibiofilm effects of citral, we classified the bacteria according to their biofilm production capacity. Citral showed greater efficacy in the initial stage, and there was a significant reduction in biofilm formation compared to the mature biofilm. qPCR was used to assess the modulation of virulence factor genes, and icaA underexpression was observed in isolates 20 and 48. For icaD, seg, and sei, an increase was observed in the expression of ATCC 33,591. No significant differences were found for eta and etb. Citral could be used as a supplement to conventional antibiotics for MRSA infections.


Sign in / Sign up

Export Citation Format

Share Document