Inhibitory effect of methyl gallate and gallic acid on oral bacteria

2008 ◽  
Vol 46 (6) ◽  
pp. 744-750 ◽  
Author(s):  
Mi-Sun Kang ◽  
Jong-Suk Oh ◽  
In-Chol Kang ◽  
Suk-Jin Hong ◽  
Choong-Ho Choi
PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248521
Author(s):  
Chien-Yu Huang ◽  
Yu-Jia Chang ◽  
Po-Li Wei ◽  
Chin-Sheng Hung ◽  
Weu Wang

Hepatocellular carcinoma (HCC) is a global health problem. Currently, there is no effective therapeutic strategy for HCC. Methyl gallate (MG), from plant-derived phenolic gallic acid, has exhibited antitumor efficacy. However, the effect of MG on HCC is unclear. In vitro growth activity was detected by a sulforhodamine assay. A zebrafish xenotransplantation was applied to evaluate the inhibitory effect of MG. Reactive oxygen species (ROS) production, autophagy, and lysosome formation were detected by specific dyes. Finally, apoptosis was examined using annexin V-FITC/PI staining and western blot was performed to determine the molecular mechanism. It was demonstrated that MG treatment inhibited the proliferation of Hep3B, Mahlavu, and HepJ5 cells. Xenotransplantation also showed that MG inhibited the growth of Hep3B and HepJ5 cells. MG treatment increased cellular levels of superoxide and oxidative stress. Increases in autophagy and lysosome formation were found after MG treatment. The western blot analysis showed that MG activated cleavage of caspase-3 and poly (SDP ribose) polymerase (PARP), modulated levels of the Bcl2, Bax, and Bad ligands, and induced apoptosis. MG induced autophagy with notable activation of beclin-1, autophagy related 5+12 (ATG5+12), and conversion of light chain 3-I (LC3-I) to II. Our study showed that MG exposure inhibited HCC proliferation both in vitro and in vivo. And blocking autophagy enhanced MG-induced cytotoxicity in HCC cells. These findings suggested MG might serve as a powerful therapeutic supplement for human HCC patients.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Ali Mahmoud Muddathir ◽  
Ebtihal Abdalla M. Mohieldin ◽  
Tohru Mitsunaga

Abstract Background Dental caries and periodontal disease are the most common chronic infectious oral diseases in the world. Acacia nilotica was commonly known in Sudan as Garad or Sunt has a wide range of medicinal uses. In the present study, antibacterial activity of oral bacteria (Streptococcus sobrinus and Porphyromonas gingivalis), inhibitory activity against glucosyltransferase (GTF) enzyme and antioxidant activity were assayed for methanolic crude extract of A. nilotica bark and its fractions. Methods Methanoilc crude extract of A. nilotica bark was applied to a Sephadex LH-20 column and eluted with methanol, aqueous methanol, and finally aqueous acetone to obtain four fractions (Fr1- Fr4). Furthermore, the crude extract and fractions were subjected to analytical high performance liquid chromatography (HPLC). The crude extract and its fractions were assayed for antibacterial activity against S. sobrinus and P. gingivalis using a microplate dilution assay method to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), as well as GTF inhibition and antioxidant activity using ABTS radical scavenging method. Results Fractions (Fr1 and Fr2) exhibited MIC values of 0.3 mg/ml against the P. gingivalis. Additionally, Fr2 displayed MBC value of 1 mg/ml against two types of bacteria. Fr4 showed an especially potent GTF inhibitory activity with IC50 value of 3.9 μg/ml. Fr1 displayed the best antioxidant activity with IC50 value of 1.8 μg/ml. The main compound in Fr1 was identified as gallic acid, and Fr2 was mostly a mixture of gallic acid and methyl gallate. Conclusions The results obtained in this study provide some scientific rationale and justify the use of this plant for the treatment of dental diseases in traditional medicine. A. nilotica bark, besides their antibacterial potentiality and GTF inhibitory activity, it may be used as adjuvant antioxidants in mouthwashes. Further studies in the future are required to identify the rest of the active compounds.


Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1466
Author(s):  
Lisard Iglesias-Carres ◽  
Lauren A. Essenmacher ◽  
Kathryn C. Racine ◽  
Andrew P. Neilson

Choline is metabolized by the gut microbiota into trimethylamine (TMA), the precursor of pro-atherosclerotic molecule trimethylamine N-oxide (TMAO). A reduction in TMA formation has shown cardioprotective effects, and some phytochemicals may reduce TMA formation. This study aimed to develop an optimized, high-throughput anaerobic fermentation methodology to study the inhibition of choline microbial metabolism into TMA by phenolic compounds with healthy human fecal starter. Optimal fermentation conditions were: 20% fecal slurry (1:10 in PBS), 100 µM choline, and 12 h fermentation. Additionally, 10 mM of 3,3-dimethyl-1-butanol (DMB) was defined as a positive TMA production inhibitor, achieving a ~50% reduction in TMA production. Gallic acid and chlorogenic acid reported higher TMA inhibitory potential (maximum of 80–90% TMA production inhibition), with IC50 around 5 mM. Neither DMB nor gallic acid or chlorogenic acid reduced TMA production through cytotoxic effects, indicating mechanisms such as altered TMA-lyase activity or expression.


Author(s):  
O. P. Oladosu ◽  
N. R. Isu ◽  
I. M. Aboh ◽  
S. E. Okhale ◽  
A. T. Orishadipe ◽  
...  

The emergence of multi-drug resistance in bacteria has led to call for research and development of new leads as antibiotics from medicinal plants. Acacia nilotica (Linn) is a plant of multipurpose medicinal uses, three bioactive flavonoids (methyl gallate, gallic acid and catechin) were isolated from its fruit pulps through a bioassay guided fractionation technique and characterized based on High Performance Liquid Chromatography, Liquid Chromatography-Mass Spectra and Nuclear Magnetic Resonance spectra. Antibacterial activity of these compounds was determined by microplate tetrazolium dye assay of broth microdilution technique against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and clinical isolates of Salmonella typhi, Klebsiella pneumonia, Candida albicans and Bacillus subtilis. Catechin, methyl gallate and gallic acid at 19.5, 39 and 39 µg/ml respectively caused a significant bio-reduction in cells of test organisms. Time kill kinetic study of the extract shows that there was percentage of growth reduction in test organisms at 2, 4, 6, 8 and 12 hrs of contact. The extent and rate of killing of the organism by the extract at 2 x MIC followed the same trend as rate of killing was time dependent. Antibacterial effects of these compounds are within the breakpoint of control drug chloramphenicol and could serve as leads in new drug development.


Molecules ◽  
2019 ◽  
Vol 24 (5) ◽  
pp. 889 ◽  
Author(s):  
Truong Minh ◽  
Tran Xuan ◽  
Hoang-Dung Tran ◽  
Truong Van ◽  
Yusuf Andriana ◽  
...  

This paper reports the successive isolation and purification of bioactive compounds from the stem bark of Jatropha podagrica, a widely known medicinal plant. The ethyl acetate extract of the stem bark exhibited the strongest antioxidant activity assessed by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging, and ferric reducing antioxidant power (FRAP) assays (IC50 = 46.7, 66.0, and 492.6, respectively). By column chromatography (CC) with elution of hexane and ethyl acetate at 8:2, 7:3, and 6:4 ratios, the isolation of this active extract yielded five fractions (C1–C5). Chemical structures of the constituents included in C1–C5 were elucidated by gas chromatography-mass spectrometry (GC-MS), electrospray ionization-mass spectrometry (ESI-MS), and nuclear magnetic resonance (NMR) and resolved as methyl gallate (C1, C2, C3, C4), gallic acid (C1, C2), fraxetin (C2, C3, C4, C5), and tomentin (C3). Mixture C2 (IC50 DPPH and ABTS = 2.5 µg/mL) and C3 (IC50 FRAP = 381 µg/mL) showed the highest antioxidant properties. Among the isolated fractions, C4 was the most potential agent in growth inhibition of six bacterial strains including Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Listeria monocytogenes, Bacillus subtilis, and Proteus mirabilis (MIC = 5, 20, 30, 20, 25, and 20 mg/mL, respectively). All identified constituents exerted an inhibitory activity on the growth of Lactuca sativa, of which the mixture C3 performed the maximal inhibition on shoot (IC50 = 49.4 µg/mL) and root (IC50 = 47.1 µg/mL) growth. Findings of this study suggest that gallic acid, methyl gallate, fraxetin, and tomentin isolated from J. podagrica possessed antioxidant, antibacterial, and growth inhibitory potentials.


2010 ◽  
Vol 5 (4) ◽  
pp. 1934578X1000500
Author(s):  
Juan A. Gayosso-De-Lucio ◽  
J. Martín Torres-Valencia ◽  
Carlos M. Cerda-García-Rojas ◽  
Pedro Joseph-Nathan

The aerial parts of Geranium potentillaefoium afforded geraniin (1), corilagin (2), gallic acid (4), methyl gallate (6), methyl brevifolincarboxylate (7), quercetin, quercetin 3- O-β-D-glucopyranoside, quercetin 3- O-β-D-[6″- O-galloyl)glucopyranoside, kaempferol, β-sitosterol 3- O-β-D-glucopyranoside and β-sitosterol, while the aerial parts of G. bellum gave the same compounds in addition to kaempferol 3- O-β-D-glucopyranoside, isolated instead of kaempferol. The substances were identified by 1D and 2D NMR spectroscopy in comparison with published data. The water decoction preparations from air-dried plant materials (2.5 g) contain ca. 4.6 % of the ellagitannin 1, envisaging that when such decoction is ingested (250 mL), a therapeutic dose of ca. 36 mg of the antitumor ellagic acid (3) may be incorporated into the organism.


Sign in / Sign up

Export Citation Format

Share Document