scholarly journals Explainable Machine Learning for COVID-19 Pneumonia Classification With Texture-Based Features Extraction in Chest Radiography

2022 ◽  
Vol 3 ◽  
Author(s):  
Luís Vinícius de Moura ◽  
Christian Mattjie ◽  
Caroline Machado Dartora ◽  
Rodrigo C. Barros ◽  
Ana Maria Marques da Silva

Both reverse transcription-PCR (RT-PCR) and chest X-rays are used for the diagnosis of the coronavirus disease-2019 (COVID-19). However, COVID-19 pneumonia does not have a defined set of radiological findings. Our work aims to investigate radiomic features and classification models to differentiate chest X-ray images of COVID-19-based pneumonia and other types of lung patterns. The goal is to provide grounds for understanding the distinctive COVID-19 radiographic texture features using supervised ensemble machine learning methods based on trees through the interpretable Shapley Additive Explanations (SHAP) approach. We use 2,611 COVID-19 chest X-ray images and 2,611 non-COVID-19 chest X-rays. After segmenting the lung in three zones and laterally, a histogram normalization is applied, and radiomic features are extracted. SHAP recursive feature elimination with cross-validation is used to select features. Hyperparameter optimization of XGBoost and Random Forest ensemble tree models is applied using random search. The best classification model was XGBoost, with an accuracy of 0.82 and a sensitivity of 0.82. The explainable model showed the importance of the middle left and superior right lung zones in classifying COVID-19 pneumonia from other lung patterns.

Author(s):  
V. N. Manjunath Aradhya ◽  
Mufti Mahmud ◽  
D. S. Guru ◽  
Basant Agarwal ◽  
M. Shamim Kaiser

AbstractCoronavirus disease (COVID-19) has infected over more than 28.3 million people around the globe and killed 913K people worldwide as on 11 September 2020. With this pandemic, to combat the spreading of COVID-19, effective testing methodologies and immediate medical treatments are much required. Chest X-rays are the widely available modalities for immediate diagnosis of COVID-19. Hence, automation of detection of COVID-19 from chest X-ray images using machine learning approaches is of greater demand. A model for detecting COVID-19 from chest X-ray images is proposed in this paper. A novel concept of cluster-based one-shot learning is introduced in this work. The introduced concept has an advantage of learning from a few samples against learning from many samples in case of deep leaning architectures. The proposed model is a multi-class classification model as it classifies images of four classes, viz., pneumonia bacterial, pneumonia virus, normal, and COVID-19. The proposed model is based on ensemble of Generalized Regression Neural Network (GRNN) and Probabilistic Neural Network (PNN) classifiers at decision level. The effectiveness of the proposed model has been demonstrated through extensive experimentation on a publicly available dataset consisting of 306 images. The proposed cluster-based one-shot learning has been found to be more effective on GRNN and PNN ensembled model to distinguish COVID-19 images from that of the other three classes. It has also been experimentally observed that the model has a superior performance over contemporary deep learning architectures. The concept of one-shot cluster-based learning is being first of its kind in literature, expected to open up several new dimensions in the field of machine learning which require further researching for various applications.


Author(s):  
Deepali R Deshpande ◽  
Raj L Shah ◽  
Anish N Shaha

The motive behind the project is to build a machine learning model for detection of Covid-19. Using this model, it is possible to classify images of chest x-rays into normal patients, pneumatic patients, and covid-19 positive patients. This CNN based model will help drastically to save time constraints among the patients. Instead of relying on limited RT-PCR kits, just a simple chest x-ray can help us determine health of the patient. Not only we get immediate results, but we can also practice social distancing norms more effectively.


MENDEL ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 9-17
Author(s):  
Hiam Alquran ◽  
Mohammad Alsleti ◽  
Roaa Alsharif ◽  
Isam Abu Qasmieh ◽  
Ali Mohammad Alqudah ◽  
...  

The novel coronavirus (nCoV-19) was first detected in December 2019. It had spread worldwide and was declared coronavirus disease (COVID-19) pandemic by March 2020. Patients presented with a wide range of symptoms affecting multiple organ systems predominantly the lungs. Severe cases required intensive care unit (ICU) admissions while there were asymptomatic cases as well. Although early detection of the COVID-19 virus by Real-time reverse transcription-polymerase chain reaction (RT-PCR) is effective, it is not efficient; as there can be false negatives, it is time consuming and expensive. To increase the accuracy of in-vivo detection, radiological image-based methods like a simple chest X-ray (CXR) can be utilized. This reduces the false negatives as compared to solely using the RT-PCR technique. This paper employs various image processing techniques besides extracted texture features from the radiological images and feeds them to different artificial intelligence (AI) scenarios to distinguish between normal, pneumonia, and COVID-19 cases. The best scenario is then adopted to build an automated system that can segment the chest region from the acquired image, enhance the segmented region then extract the texture features, and finally, classify it into one of the three classes. The best overall accuracy achieved is 93.1% by exploiting Ensemble classifier. Utilizing radiological data to conform to a machine learning format reduces the detection time and increase the chances of survival.


Author(s):  
Ankita Shelke ◽  
Madhura Inamdar ◽  
Vruddhi Shah ◽  
Amanshu Tiwari ◽  
Aafiya Hussain ◽  
...  

AbstractIn today’s world, we find ourselves struggling to fight one of the worst pandemics in the history of humanity known as COVID-2019 caused by a coronavirus. If we detect the virus at an early stage (before it enters the lower respiratory tract), the patient can be treated quickly. Once the virus reaches the lungs, we observe ground-glass opacity in the chest X-ray due to fibrosis in the lungs. Due to the significant differences between X-ray images of an infected and non-infected person, artificial intelligence techniques can be used to identify the presence and severity of the infection. We propose a classification model that can analyze the chest X-rays and help in the accurate diagnosis of COVID-19. Our methodology classifies the chest X-rays into 4 classes viz. normal, pneumonia, tuberculosis (TB), and COVID-19. Further, the X-rays indicating COVID-19 are classified on severity-basis into mild, medium, and severe. The deep learning model used for the classification of pneumonia, TB, and normal is VGG16 with an accuracy of 95.9 %. For the segregation of normal pneumonia and COVID-19, the DenseNet-161 was used with an accuracy of 98.9 %. ResNet-18 worked best for severity classification achieving accuracy up to 76 %. Our approach allows mass screening of the people using X-rays as a primary validation for COVID-19.


2021 ◽  
Author(s):  
Thanakorn Poomkur ◽  
Thakerng Wongsirichot

The coronavirus disease of 2019 (COVID-19) has been declared a pandemic and has raised worldwide concern. Lung inflammation and respiratory failure are commonly observed in moderate-to-severe cases. Chest X-ray imaging is compulsory for diagnosis, and interpretation is commonly performed by skilled medical specialists. Many studies have been conducted using machine learning approaches such as Deep Learning (DL) with acceptable accuracy. However, other dimensions such as computational time were less discussed. Thus, our work is motivated to design anew computer-aided diagnosis (CADx) tool for identifying chest X-ray images of COVID-19 infection using machine learning techniques including Decision Tree (DT), Support Vector Machine (SVM), and Neural Networks (NNs). Our work is designed with the concept of multi-layer classification architecture and performs with minimal computational time and acceptable classification results. First, image segmentation, image enhancement and feature extraction techniques are performed. Second, machine learning techniques are selected based on classification performance. Finally, selected machine learning techniques are assembled into a multi-layer hybrid classification model for COVID-19 (MLHC-COVID-19). Specifically, the MLHC-COVID-19 consists of two layers, Layer I: Healthy and Unhealthy; Layer II: COVID-19 and non-COVID-19.


2019 ◽  
Author(s):  
Sohrab Towfighi ◽  
Arnav Agarwal ◽  
Denise Y. F. Mak ◽  
Amol Verma

AbstractThe chest x-ray is a commonly requested diagnostic test on internal medicine wards which can diagnose many acute pathologies needing intervention. We developed a natural language processing (NLP) and machine learning (ML) model to identify the presence of opacities or endotracheal intubation on chest x-rays using only the radiology report. This a preliminary report of our work and findings. Using the General Medicine Inpatient Initiative (GEMINI) dataset, housing inpatient clinical and administrative data from 7 major hospitals, we retrieved 1000 plain film radiology reports which were classified according to 4 labels by an internal medicine resident. NLP/ML models were developed to identify the following on the radiograph reports: the report is that of a chest x-ray, there is definite absence of an opacity, there is definite presence of an opacity, the report is a follow-up report with minimal details in its text, and there is an endotracheal tube in place. Our NLP/ML model development methodology included a random search of either TF-IDF or bag-of-words for vectorization along with random search of various ML models. Our Python programming scripts were made publicly available on GitHub to allow other parties to train models using their own text data. 100 randomly generated ML pipelines were compared using 10-fold cross validation on 75% of the data, while 25% of the data was left out for generalizability testing. With respect to the question of whether a chest x-ray definitely lacks an opacity, the model’s performance metrics were accuracy of 0.84, precision of 0.94, recall of 0.81, and receiver operating characteristic area under curve of 0.86. Model performance was worse when trained against a highly imbalanced dataset despite the use of an advanced oversampling technique.


Author(s):  
Rahul Kumar ◽  
Ridhi Arora ◽  
Vipul Bansal ◽  
Vinodh J Sahayasheela ◽  
Himanshu Buckchash ◽  
...  

ABSTRACTAccording to the World Health Organization (WHO), the coronavirus (COVID-19) pandemic is putting even the best healthcare systems across the world under tremendous pressure. The early detection of this type of virus will help in relieving the pressure of the healthcare systems. Chest X-rays has been playing a crucial role in the diagnosis of diseases like Pneumonia. As COVID-19 is a type of influenza, it is possible to diagnose using this imaging technique. With rapid development in the area of Machine Learning (ML) and Deep learning, there had been intelligent systems to classify between Pneumonia and Normal patients. This paper proposes the machine learning-based classification of the extracted deep feature using ResNet152 with COVID-19 and Pneumonia patients on chest X-ray images. SMOTE is used for balancing the imbalanced data points of COVID-19 and Normal patients. This non-invasive and early prediction of novel coronavirus (COVID-19) by analyzing chest X-rays can further be used to predict the spread of the virus in asymptomatic patients. The model is achieving an accuracy of 0.973 on Random Forest and 0.977 using XGBoost predictive classifiers. The establishment of such an approach will be useful to predict the outbreak early, which in turn can aid to control it effectively.


2020 ◽  
Author(s):  
Armando Ugo Cavallo ◽  
Jacopo Troisi ◽  
Marco Forcina ◽  
Piervalerio Mari ◽  
Valerio Forte ◽  
...  

Abstract Objectives: One of the most challenging aspects related to Covid-19 is to establish the presence of infection in early phase of the disease. Recently Artificial Intelligence systems for the diagnosis of Covid-19 related pneumonia on Chest X ray (CXR) or chest CT have been tested with variable, but not negligible, accuracy. Texture analysis might be an additional tool for the evaluation of CXR in patients with clinical suspicion of Covid-19 related pneumonia.Methods: CXR images were accessed from a publicly available repository (https://www.kaggle.com/tawsifurrahman/covid19-radiography-database). Lung areas were manually segmented using a polygonal regions of interest (ROI) covering both lung areas, using MaZda, a freely available software for texture analysis. A total of 308 features per ROI was extracted. One hundred-ten Covid-19 CXR images were selected for the final analysisResults: Six models, namely NB, GLM, DL, GBT, ANN and PLS-DA were selected and ensembled. According to Youden’s index, the Covid-19 Ensemble Machine Learning (EML)-Score showing the highest AUCROC (0.971±0.015) was 132.57. Assuming this cut-off the EML model performance was estimated evaluating both true and false positive/negative, resulting in 91.8% accuracy with 93% sensitivity and 90% specificity. Moving the cut-off value to -100, although the accuracy resulted lower (90.6%), the EML showed 100% sensitivity, with 80% specificityConclusion: Texture analysis of CXR images and machine learning algorithms may help in differentiating patients with Covid-19 pneumonia. Despite several limitations, this study can lay ground for future researches in this field and help developing more rapid and accurate screening tools for these patients.


Author(s):  
Armando Ugo Cavallo ◽  
Jacopo Troisi ◽  
Marco Forcina ◽  
Pier-Valerio Mari ◽  
Valerio Forte ◽  
...  

Background: One of the most challenging aspects related to Covid-19 is to establish the presence of infection in early phase of the disease. Texture analysis might be an additional tool for the evaluation of Chest X-ray in patients with clinical suspicion of Covid-19 related pneumonia. Objective: To evaluate the diagnostic performance of texture analysis and machine learning models for the diagnosis of Covid-19 interstitial pneumonia in Chest X-ray images. Methods: Chest X-ray images were accessed from a publicly available repository (https://www.kaggle.com/tawsifurrahman/covid19-radiography-database). Lung areas were manually segmented using a polygonal regions of interest covering both lung areas, using MaZda, a freely available software for texture analysis. A total of 308 features per ROI was extracted. One hundred-ten Covid-19 Chest X-ray images were selected for the final analysis. Results: Six models, namely NB, GLM, DL, GBT, ANN and PLS-DA were selected and ensembled. According to Youden’s index, the Covid-19 Ensemble Machine Learning Score showing the highest Area Under the Curve (0.971±0.015) was 132.57. Assuming this cut-off the Ensemble model performance was estimated evaluating both true and false positive/negative, resulting in 91.8% accuracy with 93% sensitivity and 90% specificity. Moving the cut-off value to -100, although the accuracy resulted lower (90.6%), the Ensemble Machine Learning showed 100% sensitivity, with 80% specificity. Conclusion: Texture analysis of Chest X-ray images and machine learning algorithms may help in differentiating patients with Covid-19 pneumonia. Despite several limitations, this study can lay ground for future researches in this field and help developing more rapid and accurate screening tools for these patients.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247176
Author(s):  
Ahmed Hamza Osman ◽  
Hani Moetque Aljahdali ◽  
Sultan Menwer Altarrazi ◽  
Ali Ahmed

The outbreak of coronavirus disease 2019 (COVID-19) has had an immense impact on world health and daily life in many countries. Sturdy observing of the initial site of infection in patients is crucial to gain control in the struggle with COVID-19. The early automated detection of the recent coronavirus disease (COVID-19) will help to limit its dissemination worldwide. Many initial studies have focused on the identification of the genetic material of coronavirus and have a poor detection rate for long-term surgery. The first imaging procedure that played an important role in COVID-19 treatment was the chest X-ray. Radiological imaging is often used as a method that emphasizes the performance of chest X-rays. Recent findings indicate the presence of COVID-19 in patients with irregular findings on chest X-rays. There are many reports on this topic that include machine learning strategies for the identification of COVID-19 using chest X-rays. Other current studies have used non-public datasets and complex artificial intelligence (AI) systems. In our research, we suggested a new COVID-19 identification technique based on the locality-weighted learning and self-organization map (LWL-SOM) strategy for detecting and capturing COVID-19 cases. We first grouped images from chest X-ray datasets based on their similar features in different clusters using the SOM strategy in order to discriminate between the COVID-19 and non-COVID-19 cases. Then, we built our intelligent learning model based on the LWL algorithm to diagnose and detect COVID-19 cases. The proposed SOM-LWL model improved the correlation coefficient performance results between the Covid19, no-finding, and pneumonia cases; pneumonia and no-finding cases; Covid19 and pneumonia cases; and Covid19 and no-finding cases from 0.9613 to 0.9788, 0.6113 to 1 0.8783 to 0.9999, and 0.8894 to 1, respectively. The proposed LWL-SOM had better results for discriminating COVID-19 and non-COVID-19 patients than the current machine learning-based solutions using AI evaluation measures.


Sign in / Sign up

Export Citation Format

Share Document