Effect of magnetic field on the viscous behaviour of iron particles suspended silicone additive based magnetorheological fluids

Author(s):  
Sharmili Pandian ◽  
Manickam Mahendran ◽  
Shanmugavel Rajesh ◽  
Ramalingam Chokkalingam
2007 ◽  
Vol 21 (28n29) ◽  
pp. 4849-4857 ◽  
Author(s):  
S. MANTRIPRAGADA ◽  
X. WANG ◽  
F. GORDANINEJAD ◽  
B. HU ◽  
A. FUCHS

The rheological properties of novel MR fluids are characterized using a parallel plate MR shear rheometer. In these MR fluids the surface of iron particles is coated with a polymer. The rheological properties are measured and compared at various magnetic field strengths, shear rates and strain amplitudes. It has been shown that these MR fluids exhibit stable and desirable rheological properties such as, low viscosity and high yield stress.


2021 ◽  
Vol 11 (10) ◽  
pp. 4470
Author(s):  
Inna A. Belyaeva ◽  
Jürgen Klepp ◽  
Hartmut Lemmel ◽  
Mikhail Shamonin

Ultra-small-angle neutron scattering (USANS) experiments are reported on isotropic magnetoactive elastomer (MAE) samples with different concentrations of micrometer-sized iron particles in the presence of an in-plane magnetic field up to 350 mT. The effect of the magnetic field on the scattering curves is observed in the scattering vector range between 2.5 × 10−5 and 1.85 × 10−4 Å−1. It is found that the neutron scattering depends on the magnetization history (hysteresis). The relation of the observed changes to the magnetic-field-induced restructuring of the filler particles is discussed. The perspectives of employing USANS for investigations of the internal microstructure and its changes in magnetic field are considered.


2018 ◽  
Vol 20 (30) ◽  
pp. 20247-20256 ◽  
Author(s):  
A. V. Anupama ◽  
V. B. Khopkar ◽  
V. Kumaran ◽  
B. Sahoo

The magneto-rheological behaviour of fluids containing soft-ferrimagnetic Fe3O4 micro-octahedrons (M = magnetization, τY = dynamic yield-stress and H = applied-magnetic-field).


Author(s):  
Yurui Shen ◽  
Dezheng Hua ◽  
Xinhua Liu ◽  
Weihua Li ◽  
Grzegorz Krolczyk ◽  
...  

Abstract In order to study the rheological properties of aqueous magnetorheological fluids (MRFs) from microscopic point of view, an experimental observation method based on the fluorescence confocal laser scanning microscope is proposed to clearly produce the chain shape of the magnetic particles. Firstly, the mathematical model of the magnetic particles is established in a magnetic field using the magnetic dipole theory, and the MRFs with different fraction volumes and different magnetic fields are investigated. Furthermore, an aqueous MRFs experiment is prepared, in which the magnetic particles are combined with Alexa 488 fluorescent probe. On this basis, an observation method is innovatively developed using two-dimensional (2D) and three-dimensional (3D) image analysis by the fluorescence confocal microscope. The rheological mechanism of the aqueous MRFs is investigated using four different types of MRFs in an external magnetic field. The analysis results demonstrate that the simulation and experimental rheological properties of the MRFs are consistent with the magnetic dipole theory. Moreover, the proposed method is able to real-time observe the rheological process of the MRFs with a very high resolution, which ensures the correctness of the analysis results of the rheological mechanism.


Author(s):  
Md Najib Alam ◽  
Vineet Kumar ◽  
Sang-Ryeoul Ryu ◽  
Tae Jo Koa ◽  
Dong-Joo Lee ◽  
...  

ABSTRACT This article presents the development of a new kind of magnetorheological elastomer blend made with natural rubber, acrylonitrile–butadiene rubber (NR-NBR), and electrolytic iron particles through solution mixing. The compressive stress and elastic modulus of the composites in the isotropic and anisotropic states of the filler were studied. A unique study of the filler distribution and filler orientation mechanism was proposed from the compressive properties and scanning electron microscopy. A strong improvement in the elastic modulus of the NR–NBR blend from isotropic to anisotropic change was achieved as compared with NR and NBR in single-rubber composites. The filler content in the anisotropic magnetorheological elastomers was optimized by measuring the field-dependent elastic modulus in the presence of an externally applied magnetic field. The blend rubber composites showed better sensitivity in the presence of a magnetic field than the NR and NBR composites did. The improvement might be due to the better filler orientation and strong adhesion of filler particles by the NR phase in the blend matrix. The new elastomer blends may have applications in active dampers, vibrational absorption, and automotive bushings.


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3017 ◽  
Author(s):  
Sneha Samal ◽  
Marcela Škodová ◽  
Ignazio Blanco

The smart materials subclass of magnetorheological elastomer (MRE) composites is presented in this work, which aimed to investigate the influence of filler distribution on surface morphology. Iron particles with sizes ranging from 20 to 150 µm were incorporated into the elastomer matrix and a 30% volume fraction (V%) was chosen as the optimal quantity for the filler amount in the elastomer composite. The surface morphology of MRE composites was examined by 3D micro-computed tomography (µCT) and scanning electron microscopy (SEM) techniques. Isotropic and anisotropic distributions of the iron particles were estimated in the magnetorheological elastomer composites. The filler particle distribution at various heights of the MRE composites was examined. The isotropic distribution of filler particles was observed without any influence from the magnetic field during sample preparation. The anisotropic arrangement of iron fillers within the MRE composites was observed in the presence of a magnetic field during fabrication. It was shown that the linear arrangement of the iron particle chain induced magnetization within the composite. Simulation analysis was also performed to predict the particle distribution of magnetization in the MREs and make a comparison with the experimental observations.


2007 ◽  
Vol 334-335 ◽  
pp. 193-196
Author(s):  
Jae Lim You ◽  
B.J. Park ◽  
I.B. Jang ◽  
Hyoung Jin Choi

To enhance dispersion stability of magnetorheological (MR) fluids, hybrid magnetic particles of carbonyl iron (CI)/ poly(vinyl butyral) (PVB) with core/shell microstrcutre (CI-PVB) were prepared, since pure magnetic CI based MR fluid systems show severe sedimentation of the CI particles due to the large density mismatch with the carrier liquid and difficulties in redispersion after caking. The composite particles of CI-PVB have a lower density than that of the pure CI particles, while exhibiting almost original magnetic property of the CI. Both CI and CI-PVB particles were dispersed in mineral oil (20 vol%) and their MR characteristics were examined via a rotational rheometer with a magnetic field supplier. Various characterizations of the CI-PVB particles were performed via SEM, TEM and FT-IR. Both yield stress and flow curve of shear stress as a function of shear rate of the MR fluids were investigated under applied magnetic field strengths.


Sign in / Sign up

Export Citation Format

Share Document