scholarly journals Investigating the effects of fault reactivation and CO2 migration during combined CO2-EOR and sequestration within a mature oil reservoir

2020 ◽  
Vol 10 (8) ◽  
pp. 3827-3848
Author(s):  
Shawn Pulchan ◽  
David Alexander ◽  
Donnie Boodlal

Abstract The investigation into the combined processes of CO2-EOR and geologic carbon sequestration was seen to be a viable solution to reducing CO2 emissions from the atmosphere, while boosting production from mature oil fields. However, the practicality of the combined process hinges on the determination of an optimum injection pressure to maximize the application of both methods. In addition, the success of these two operations is also contingent upon the dynamic sealing capacity of bounding faults, to allow hydrocarbon accumulation and trapping of injected CO2. Consequentially, the goal of this research is to optimize the implementation of combined CO2-EOR with simultaneous CO2 sequestration and investigate the enhancing/diminishing aspects of fault reactivation and CO2 migration. The study was approached from two scenarios; the first was the determination of an optimum injection pressure for the combined process, with the main focus on maximizing recovery from a mature oil field. The results saw a maximum cumulative recovery of 73.7090 Mbbls being facilitated at an optimal injection rate of 722 Scf/day. The second scenario entailed the investigation of the occurrence or lack thereof, of injection-induced fault reactivation at this predetermined injection rate of 722 Scf/day. Simulations reflecting the characteristics of fault reactivation were conducted, and are indicative of relations between fault opening stress, reactivation time, hydraulic fracture permeability, fracture propagation length, and leakage. Conclusively, the viability of the combination of CO2-EOR and sequestration were seen to depend on the technicalities of fault reactivation. In some cases, reactivation resulted in increases of accessible storage capacity, whereas, in other instances, it led to the leakage of the injected CO2.

2017 ◽  
pp. 63-67
Author(s):  
L. A. Vaganov ◽  
A. Yu. Sencov ◽  
A. A. Ankudinov ◽  
N. S. Polyakova

The article presents a description of the settlement method of necessary injection rates calculation, which is depended on the injected water migration into the surrounding wells and their mutual location. On the basis of the settlement method the targeted program of geological and technical measures for regulating the work of the injection well stock was created and implemented by the example of the BV7 formation of the Uzhno-Vyintoiskoe oil field.


Author(s):  
L.D.Mahajan ◽  
P.N.Ulhe

This paper deals with optimal injection molding process parameters for minimum short shot. In this study, analyses of injection molding process parameters were carried out to reduced defects and minimize short shots. Optimal injection molding conditions for minimum short shot were determined by the DOE technique of Taguchi and the analysis of variance (ANOVA) methods. For this study CPVC plastic specimen was tested. Determination of the optimal Injection molding process parameters were based on S/N ratios. According to results mold closing speed had significant effect on quality characteristic. Mold pressure and Injection pressure had no significant effect


2013 ◽  
Vol 734-737 ◽  
pp. 1189-1195
Author(s):  
Li Yan Sun ◽  
Hai Dong Shi ◽  
Hao Yang ◽  
Ji Cheng Zhang

Figuring out the rule of remaining oil distribution after polymer flooding is the basis for continuing study on development policy after polymer flooding in Daqing Oil Field. Based on the basic principles of percolation mechanics, percolation mechanics of polymer flooding reservoirs under fixed injection pressure and injection rate was studied, the mechanism of remaining oil changes after polymer flooding was investigated; According to the numerical simulation results, the rule of remaining oil distribution in Daqing oilfield has been given out. This will be theoretical and practical guidance for enhancing oil recovery after polymer flooding.


2021 ◽  
Vol 7 (3) ◽  
pp. 66-74
Author(s):  
Dr. Kareem A. Alwan ◽  
Dr. Maha R. Abdulameer ◽  
Mohammed Falih

Ahdeb is one of the Iraqi oil fields, its crude characterized by medium API (22.5-28.9) and highly reservoir pressure depletion from Khasib formation due to lack of water drive. This makes it difficult to produce economic oil rates. Therefore, many water injection wells were drilled by the operators to maintain the reservoir pressure during production. In addition to that, electrical submersible pumps (ESP) were used in some productive wells. This study suggests exploitation of gas associated with oil production to be recycled to lift oil as a substitute for the ESP .The work in this study includes using PIPSIM software to build a model of four studied productive wells (AD1-11-2H, AD2-15-2H, AD4-13-3H, A4-19-1H) after choosing the suited correlation for each well. According to the statistical results, Mukherjee & Brill correlation is the best option for all wells. The use of PIPESIM software include determining artificial lift performance to determine the optimum amount of gas injected, optimum injection pressure as well as the optimum injection depth and knowing the impact of these factors on production, as well as the determination of the optimal injection conditions when water cut changes. According to the current circumstances of the wells, the depth optimized for injection is the maximum allowable depth of injection which is deeper than the packer by 100 ft and the amount of injection gas is (1.5, 1, 1, and 1) MMscf/day for wells (AD2-11-2H, AD2-15-2H, AD4-13-3H, and AD4-19-2H) sequentially and injection pressure (2050, 2050, 2050, and 2000) psi for wells (AD2-11-2H, AD2-15-2H, AD4-13-3H, and AD4-19-2H) sequentially.  


Author(s):  
A. Koto

The objective of this paper is to determine the optimum anaerobic-thermophilic bacterium injection (Microbial Enhanced Oil Recovery) parameters using commercial simulator from core flooding experiments. From the previous experiment in the laboratory, Petrotoga sp AR80 microbe and yeast extract has been injected into core sample. The result show that the experiment with the treated microbe flooding has produced more oil than the experiment that treated by brine flooding. Moreover, this microbe classified into anaerobic thermophilic bacterium due to its ability to live in 80 degC and without oxygen. So, to find the optimum parameter that affect this microbe, the simulation experiment has been conducted. The simulator that is used is CMG – STAR 2015.10. There are five scenarios that have been made to forecast the performance of microbial flooding. Each of this scenario focus on the injection rate and shut in periods. In terms of the result, the best scenario on this research can yield an oil recovery up to 55.7%.


Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 319 ◽  
Author(s):  
Bin Huang ◽  
Xiaohui Li ◽  
Cheng Fu ◽  
Ying Wang ◽  
Haoran Cheng

Previous studies showed the difficulty during polymer flooding and the low producing degree for the low permeability layer. To solve the problem, Daqing, the first oil company, puts forward the polymer-separate-layer-injection-technology which separates mass and pressure in a single pipe. This technology mainly increases the control range of injection pressure of fluid by using the annular de-pressure tool, and reasonably distributes the molecular weight of the polymer injected into the thin and poor layers through the shearing of the different-medium-injection-tools. This occurs, in order to take advantage of the shearing thinning property of polymer solution and avoid the energy loss caused by the turbulent flow of polymer solution due to excessive injection rate in different injection tools. Combining rheological property of polymer and local perturbation theory, a rheological model of polymer solution in different-medium-injection-tools is derived and the maximum injection velocity is determined. The ranges of polymer viscosity in different injection tools are mainly determined by the structures of the different injection tools. However, the value of polymer viscosity is mainly determined by the concentration of polymer solution. So, the relation between the molecular weight of polymer and the permeability of layers should be firstly determined, and then the structural parameter combination of the different-medium-injection-tool should be optimized. The results of the study are important for regulating polymer injection parameters in the oilfield which enhances the oil recovery with reduced the cost.


2000 ◽  
Vol 11 (10) ◽  
pp. 1277-1284 ◽  
Author(s):  
Richard Frayne ◽  
Reed A. Omary ◽  
Orhan Unal ◽  
Charles M. Strother

2021 ◽  
Author(s):  
Prosper Kiisi Lekia

Abstract One of the challenges of the petroleum industry is achieving maximum recovery from oil reservoirs. The natural energy of the reservoir, primary recoveries in most cases do not exceed 20%. To improve recovery, secondary recovery techniques are employed. With secondary recovery techniques such as waterflooding, an incremental recovery ranging from 15 to 25% can be achieved. Several theories and methods have been developed for predicting waterflood performance. The Dykstra-Parson technique stands as the most widely used of these methods. The authors developed a discrete, analytical solution from which the vertical coverage, water-oil ratio, cumulative oil produced, cumulative water produced and injected, and the time required for injection was determined. Reznik et al extended the work of Dykstra and Parson to include exact, analytical, continuous solutions, with explicit solutions for time, constant injection pressure, and constant overall injection rate conditions, property time, real or process time, with the assumption of piston-like displacement. This work presents a computer implementation to compare the results of the Dykstra and Parson method, and the Reznik et al extension. A user-friendly graphical user interface executable application has been developed for both methods using Python 3. The application provides an interactive GUI output for graphs and tables with the python matplotlib module, and Pandastable. The GUI was built with Tkinter and converted to an executable desktop application using Pyinstaller and the Nullsoft Scriptable Install System, to serve as a hands-on tool for petroleum engineers and the industry. The results of the program for both methods gave a close match with that obtained from the simulation performed with Flow (Open Porous Media). The results provided more insight into the underlying principles and applications of the methods.


2021 ◽  
Author(s):  
Mohammed Ahmed Al-Janabi ◽  
Omar F. Al-Fatlawi ◽  
Dhifaf J. Sadiq ◽  
Haider Abdulmuhsin Mahmood ◽  
Mustafa Alaulddin Al-Juboori

Abstract Artificial lift techniques are a highly effective solution to aid the deterioration of the production especially for mature oil fields, gas lift is one of the oldest and most applied artificial lift methods especially for large oil fields, the gas that is required for injection is quite scarce and expensive resource, optimally allocating the injection rate in each well is a high importance task and not easily applicable. Conventional methods faced some major problems in solving this problem in a network with large number of wells, multi-constrains, multi-objectives, and limited amount of gas. This paper focuses on utilizing the Genetic Algorithm (GA) as a gas lift optimization algorithm to tackle the challenging task of optimally allocating the gas lift injection rate through numerical modeling and simulation studies to maximize the oil production of a Middle Eastern oil field with 20 production wells with limited amount of gas to be injected. The key objective of this study is to assess the performance of the wells of the field after applying gas lift as an artificial lift method and applying the genetic algorithm as an optimization algorithm while comparing the results of the network to the case of artificially lifted wells by utilizing ESP pumps to the network and to have a more accurate view on the practicability of applying the gas lift optimization technique. The comparison is based on different measures and sensitivity studies, reservoir pressure, and water cut sensitivity analysis are applied to allow the assessment of the performance of the wells in the network throughout the life of the field. To have a full and insight view an economic study and comparison was applied in this study to estimate the benefits of applying the gas lift method and the GA optimization technique while comparing the results to the case of the ESP pumps and the case of naturally flowing wells. The gas lift technique proved to have the ability to enhance the production of the oil field and the optimization process showed quite an enhancement in the task of maximizing the oil production rate while using the same amount of gas to be injected in the each well, the sensitivity analysis showed that the gas lift method is comparable to the other artificial lift method and it have an upper hand in handling the reservoir pressure reduction, and economically CAPEX of the gas lift were calculated to be able to assess the time to reach a profitable income by comparing the results of OPEX of gas lift the technique showed a profitable income higher than the cases of naturally flowing wells and the ESP pumps lifted wells. Additionally, the paper illustrated the genetic algorithm (GA) optimization model in a way that allowed it to be followed as a guide for the task of optimizing the gas injection rate for a network with a large number of wells and limited amount of gas to be injected.


2021 ◽  
Vol 73 (09) ◽  
pp. 58-59
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper OTC 30407, “Case Study of Nanopolysilicon Materials’ Depressurization and Injection-Increasing Technology in Offshore Bohai Bay Oil Field KL21-1,” by Qing Feng, Nan Xiao Li, and Jun Zi Huang, China Oilfield Services, et al., prepared for the 2020 Offshore Technology Conference Asia, originally scheduled to be held in Kuala Lumpur, 2–6 November. The paper has not been peer reviewed. Copyright 2020 Offshore Technology Conference. Reproduced by permission. Nanotechnology offers creative approaches to solve problems of oil and gas production that also provide potential for pressure-decreasing application in oil fields. However, at the time of writing, successful pressure-decreasing nanotechnology has rarely been reported. The complete paper reports nanopolysilicon as a new depressurization and injection-increasing agent. The stability of nanopolysilicon was studied in the presence of various ions, including sodium (Na+), calcium (Ca2+), and magnesium (Mg2+). The study found that the addition of nanomaterials can improve porosity and permeability of porous media. Introduction More than 600 water-injection wells exist in Bohai Bay, China. Offshore Field KL21-1, developed by water-flooding, is confronted with the following challenges: - Rapid increase and reduction of water-injection pressure - Weak water-injection capacity of reservoir - Decline of oil production - Poor reservoir properties - Serious hydration and expansion effects of clay minerals To overcome injection difficulties in offshore fields, conventional acidizing measures usually are taken. But, after multiple cycles of acidification, the amount of soluble substances in the rock gradually decreases and injection performance is shortened. Through injection-performance experiments, it can be determined that the biological nanopolysilicon colloid has positive effects on pressure reduction and injection increase. Fluid-seepage-resistance decreases, the injection rate increases by 40%, and injection pressure decreases by 10%. Features of Biological Nanopolysilicon Systems The biological nanopolysilicon-injection system was composed of a bioemulsifier (CDL32), a biological dispersant (DS2), and a nanopolysilicon hydrophobic system (NP12). The bacterial strain of CDL32 was used to obtain the culture colloid of biological emulsifier at 37°C for 5 days. DS2 was made from biological emulsifier CDL32 and some industrial raw materials described in Table 1 of the complete paper. Nanopolysilicon hydrophobic system NP12 was composed of silicon dioxide particles. The hydrophobic nanopolysilicons selected in this project featured particle sizes of less than 100 nm. In the original samples, a floc of nanopolysilicon was fluffy and uniform. But, when wet, nanopolysilicon will self-aggregate and its particle size increases greatly. At the same time, nanopolysilicon features significant agglomeration in water. Because of its high interface energy, nanopolysilicon is easily agglomerated, as shown in Fig. 1.


Sign in / Sign up

Export Citation Format

Share Document