scholarly journals Influence of different pore structure types on the occurrence features of movable fluid in Chang-10 reservoir in Wuqi–Ansai Oilfield

2021 ◽  
Vol 11 (4) ◽  
pp. 1609-1620
Author(s):  
Yong-li Gao ◽  
Pan Li ◽  
Teng Li

AbstractChang-10 reservoir in Wuqi–Ansai oilfield of Ordos Basin is restricted by its strong microscopic heterogeneity, complicated microscopic pore structure and unclear oil–water movement rules. The technology of nuclear magnetic resonance (NMR) is an excellent method to quantitatively evaluate the reservoir fluid of different pore structure types, and the microscopic experiments such as cast thin slices, scanning electron microscope (SEM) and high-pressure mercury injection were also used to analyze the differences in the occurrence features of fluid of different pore structure types and their influencing factors. The experimental results show that the sandstone types of Chang-10 reservoir in Wuqi–Ansai Oilfield are mainly medium-fine arkose and lithic arkose. The pore types are mainly intergranular pore, feldspar pore, turbiditic zeolite pore and cuttings pore. The combination type of pore-throat belongs to mesopore–micropore and microlarynx–microlarynx. By mercury injection experiment analyzed the characteristic of capillary pressure curve, Chang-10 reservoir in Wuqi–Ansai Oilfield pore structures is classified into Type I, Type II, Type III and Type IV due to the different movable fluid occurrence features. The occurrence features of movable fluid are obviously controlled by the pore-throat, and the orders of control effect from strong to weak are from Type I, Type II, Type III to IV The saturation of movable fluid gradually becomes low when the pore-throat radius decreases.

Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2242 ◽  
Author(s):  
Zhihao Jiang ◽  
Zhiqiang Mao ◽  
Yujiang Shi ◽  
Daxing Wang

Pore structure determines the ability of fluid storage and migration in rocks, expressed as porosity and permeability in the macroscopic aspects, and the pore throat radius in the microcosmic aspects. However, complex pore structure and strong heterogeneity make the accurate description of the tight sandstone reservoir of the Triassic Yanchang Formation, Ordos Basin, China still a problem. In this paper, mercury injection capillary pressure (MICP) parameters were applied to characterize the heterogeneity of pore structure, and three types of pore structure were divided, from high to low quality and defined as Type I, Type II and Type III, separately. Then, the multifractal analysis based on the MICP data was conducted to investigate the heterogeneity of the tight sandstone reservoir. The relationships among physical properties, MICP parameters and a series of multifractal parameters have been detailed analyzed. The results showed that four multifractal parameters, singularity exponent parameter (αmin), generalized dimension parameter (Dmax), information dimension (D1), and correlation dimension (D2) were in good correlations with the porosity and permeability, which can well characterize the pore structure and reservoir heterogeneity of the study area, while the others didn’t respond well. Meanwhile, there also were good relationships between these multifractal and MICP parameters.


2021 ◽  
Vol 13 (1) ◽  
pp. 1174-1186
Author(s):  
Youzhi Wang ◽  
Cui Mao ◽  
Qiang Li ◽  
Wei Jin ◽  
Simiao Zhu ◽  
...  

Abstract The complex pore throat characteristics are significant factors that control the properties of tight sandstone reservoirs. Due to the strong heterogeneity of the pore structure in tight reservoirs, it is difficult to characterize the pore structure by single methods. To determine the pore throat, core, casting thin sections, micrographs from scanning electron microscopy, rate-controlled mercury injection, and high-pressure mercury injection were performed in member 2 of Xujiahe Formation of Yingshan gasfield, Sichuan, China. The pore throat characteristics were quantitatively characterized, and the distribution of pore throat at different scales and its controlling effect on reservoir physical properties were discussed. The results show that there are mainly residual intergranular pores, intergranular dissolved pores, ingranular dissolved pores, intergranular pores, and micro-fractures in the second member of the Xujiahe Formation tight sandstone reservoir. The distribution range of pore throat is 0.018–10 μm, and the radius of pore throat is less than 1 μm. The ranges of pore radius were between 100 and 200 μm, the peak value ranges from 160 to 180 μm, and the pore throat radius ranges from 0.1 to 0.6 μm. With the increase of permeability, the distribution range of throat radius becomes wider, and the single peak throat radius becomes larger, showing the characteristic of right skew. The large throat of the sandy conglomerate reservoir has an obvious control effect on permeability, but little influence on porosity. The contribution rate of nano-sized pore throat to permeability is small, ranging from 3.29 to 34.67%. The contribution rate of porosity was 48.86–94.28%. Therefore, pore throat characteristics are used to select high-quality reservoirs, which can guide oil and gas exploration and development of tight sandstone reservoirs.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Jianwen Chen ◽  
Erbing Li ◽  
Jin Luo

Microscopic pore structure of rock salt plays a dominant role in its permeability. In this paper, microscopic pore structure of a set of rock salt samples collected from Yunying salt mine of Hubei province in China is investigated by high pressure mercury injection, rate-controlled mercury penetration, and nitrogen absorption tests. The pore size distribution is further evaluated based on fractal analysis. The results show that pore size of rock salt varies from 0.01 to 300 μm with major concentration of pore size smaller than 1.00 μm. The pore’s radiuses are mainly distributed within a range between 15 and 50 nm. The research further reveals that the pore channel size of rock salt is randomly distributed, but the distribution of pore throat radius fits very well with fractal law. By analysis of permeability, it is found that the maximum and medium radius of the pore throat have significant impacts on permeability. Porosity is not apparently related to the permeability of rock salt. The higher the fractal dimension is, the higher the impacts on permeability of the small throat are detected and the lower the influence on permeability of the big throat is exhibited. It indicates that the small throat determines majorly the permeability of rock salt. The findings obtained from this study provide an insight into understanding the characteristics of microscopic pore structure of rock salt.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4559
Author(s):  
Du Liu ◽  
Yanbin Wang ◽  
Xiaoming Ni ◽  
Chuanqi Tao ◽  
Jingjing Fan ◽  
...  

Coal structure directly correlates to permeability and hydraulic fracturing effects. Underground coal mining indicates that a single coal section generally contains multiple coal structures in superposition, making how to recognise the coal structure combination and predict its influence on coal permeability a challenging problem. Based on well-drilling sampled cores, the geological strength index (GSI), and well-logging data, the DEN, GR, CALX, and CALY were selected to establish a model to predict GSI by multiple regression to identify coal structure from 100 coalbed methane wells. Based on fitting GSI and corresponding permeability test values, injection fall-off (IFO) testing, and hydraulic fracturing results, permeability prediction models for pre- and post-fracturing behaviour were established, respectively. The fracturing effect was evaluated by the difference in permeability. The results show that a reservoir can be classified into one of nine types by different coal structure thickness proportion (and combinations thereof) and the fracturing curves can be classified into four categories (and eight sub-categories) by the pressure curve. Up-down type I and type II reservoirs (proportion of hard coal >60%) and intervening interval type I reservoir (proportion of hard coal >70%) are prone to form stable and descending fracturing curves and the fracturing effects are optimal. Intervening interval type II (hard coal:soft coal:hard coal or soft coal:hard coal:soft coal ≈1:1:1) and up-down type III (hard coal:soft coal =1:1) form descending type II, rising type I and fluctuating type I fracturing curves and fracturing effect ranks second; up-down type IV and V (proportion of hard coal <40%), interval type III (proportion of hard coal <30%), and multi-layer superposition-type reservoirs readily form fluctuating and rising fracturing curves and fracturing effects therein are poor. The research results provide guidance for the targeted stimulation measured under different coal structure combinations.


2018 ◽  
Vol 36 (6) ◽  
pp. 1438-1460 ◽  
Author(s):  
Hao Wu ◽  
Youliang Ji ◽  
Ruie Liu ◽  
Chunlin Zhang ◽  
Sheng Chen

To understand the pore structure and fractal characteristics of tight gas reservoirs, thin sections, nuclear magnetic resonance, rate-controlled mercury injection, microcomputed tomography scanning, and field emission scanning electron microscopy investigations under laboratory conditions were conducted on a suite of core samples from the Middle Permian Shihezi Formation of Sulige area in the Ordos Basin, China. The investigated tight gas sandstones comprise three types of pores, i.e. residual intergranular pore, secondary dissolution pore, and micropore. The pore–throat size distribution is extremely wide and multiscale (10 nm–400 μm) co-existing in tight gas reservoirs. The submicron- and micron-scale pore–throats with radius above 0.05 μm, which are characterized by combining rate-controlled mercury injection with nuclear magnetic resonance, are considered to be the effective pores and throats that dominated the reservoirs flow capacity. Tight gas sandstones have stage fractal characteristics, and the intrusion pressure of approximately 1 MPa is regarded as an inflection point. Fractal dimension is negatively correlated with permeability, average throat radius and mainstream throat radius, positively correlated with heterogeneous coefficient, while there are no obvious relationships with porosity and average pore radius. Additionally, the percolation characteristics of tight gas reservoirs can be characterized by fractal structure. When the pore structure does not follow the fractal structure (i.e. intrusion pressure is lower than 1 MPa), the mercury intrusion saturation is dominated by pores; in contrast, the mercury intrusion saturation is almost solely dominated by throats. This research sheds light on the pore–throat size distribution of tight gas reservoirs by identifying the role of multiple techniques and the relationships between the pore structure parameters and percolation characteristics of tight gas reservoirs and fractal dimension.


Author(s):  
G. D. Gagne ◽  
M. F. Miller ◽  
D. A. Peterson

Experimental infection of chimpanzees with non-A, non-B hepatitis (NANB) or with delta agent hepatitis results in the appearance of characteristic cytoplasmic alterations in the hepatocytes. These alterations include spongelike inclusions (Type I), attached convoluted membranes (Type II), tubular structures (Type III), and microtubular aggregates (Type IV) (Fig. 1). Type I, II and III structures are, by association, believed to be derived from endoplasmic reticulum and may be morphogenetically related. Type IV structures are generally observed free in the cytoplasm but sometimes in the vicinity of type III structures. It is not known whether these structures are somehow involved in the replication and/or assembly of the putative NANB virus or whether they are simply nonspecific responses to cellular injury. When treated with uranyl acetate, type I, II and III structures stain intensely as if they might contain nucleic acids. If these structures do correspond to intermediates in the replication of a virus, one might expect them to contain DNA or RNA and the present study was undertaken to explore this possibility.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Chen Li ◽  
Ao-Fei Liu ◽  
Han-Cheng Qiu ◽  
Xianli Lv ◽  
Ji Zhou ◽  
...  

Abstract Background Treatment of perforator involving aneurysm (piAN) remains a challenge to open and endovascular neurosurgeons. Our aim is to demonstrate a primary outcome of endovascular therapy for piANs with the use of perforator preservation technologies (PPT) based on a new neuro-interventional classification. Methods The piANs were classified into type I: aneurysm really arises from perforating artery, type II: saccular aneurysm involves perforating arteries arising from its neck (IIa) or dome (IIb), and type III: fusiform aneurysm involves perforating artery. Stent protection technology of PPT was applied in type I and III aneurysms, and coil-basket protection technology in type II aneurysms. An immediate outcome of aneurysmal obliteration after treatment was evaluated (satisfactory obliteration: the saccular aneurysm body is densely embolized (I), leaving a gap in the neck (IIa) or dome (IIb) where the perforating artery arising; fusiform aneurysm is repaired and has a smooth inner wall), and successful perforating artery preservation was defined as keeping the good antegrade flow of those perforators on postoperative angiography. The periprocedural complication was closely monitored, and clinical and angiographic follow-ups were performed. Results Six consecutive piANs (2 ruptured and 4 unruptured; 1 type I, 2 type IIa, 2 type IIb, and 1 type III) in 6 patients (aged from 43 to 66 years; 3 males) underwent endovascular therapy between November 2017 and July 2019. The immediate angiography after treatment showed 6 aneurysms obtained satisfactory obliteration, and all of their perforating arteries were successfully preserved. During clinical follow-up of 13–50 months, no ischemic or hemorrhagic event of the brain occurred in the 6 patients, but has one who developed ischemic event in the territory of involving perforators 4 h after operation and completely resolved within 24 h. Follow-up angiography at 3 to 10M showed patency of the parent artery and perforating arteries of treated aneurysms, with no aneurysmal recurrence. Conclusions Our perforator preservation technologies on the basis of the new neuro-interventional classification seem feasible, safe, and effective in protecting involved perforators while occluding aneurysm.


2021 ◽  
Vol 22 (1) ◽  
pp. 429
Author(s):  
Luca Bini ◽  
Domitille Schvartz ◽  
Chiara Carnemolla ◽  
Roberta Besio ◽  
Nadia Garibaldi ◽  
...  

Osteogenesis imperfecta (OI) is a heritable disorder that mainly affects the skeleton. The inheritance is mostly autosomal dominant and associated to mutations in one of the two genes, COL1A1 and COL1A2, encoding for the type I collagen α chains. According to more than 1500 described mutation sites and to outcome spanning from very mild cases to perinatal-lethality, OI is characterized by a wide genotype/phenotype heterogeneity. In order to identify common affected molecular-pathways and disease biomarkers in OI probands with different mutations and lethal or surviving phenotypes, primary fibroblasts from dominant OI patients, carrying COL1A1 or COL1A2 defects, were investigated by applying a Tandem Mass Tag labeling-Liquid Chromatography-Tandem Mass Spectrometry (TMT LC-MS/MS) proteomics approach and bioinformatic tools for comparative protein-abundance profiling. While no difference in α1 or α2 abundance was detected among lethal (type II) and not-lethal (type III) OI patients, 17 proteins, with key effects on matrix structure and organization, cell signaling, and cell and tissue development and differentiation, were significantly different between type II and type III OI patients. Among them, some non–collagenous extracellular matrix (ECM) proteins (e.g., decorin and fibrillin-1) and proteins modulating cytoskeleton (e.g., nestin and palladin) directly correlate to the severity of the disease. Their defective presence may define proband-failure in balancing aberrances related to mutant collagen.


2020 ◽  
pp. 1-15
Author(s):  
Zhiwei Yuan ◽  
Wen Guo ◽  
Dan Lyu ◽  
Yuanlin Sun

Abstract The filter-feeding organ of some extinct brachiopods is supported by a skeletal apparatus called the brachidium. Although relatively well studied in Atrypida and Athyridida, the brachidial morphology is usually neglected in Spiriferida. To investigate the variations of brachidial morphology in Spiriferida, 65 species belonging to eight superfamilies were analyzed. Based on the presence/absence of the jugal processes and normal/modified primary lamellae of the spiralia, four types of brachidium are recognized. Type-I (with jugal processes) and Type-II (without jugal processes), both having normal primary lamellae, could give rise to each other by losing/re-evolving the jugal processes. Type-III, without jugal processes, originated from Type-II through evolution of the modified lateral-convex primary lamellae, and it subsequently gave rise to Type-IV by evolving the modified medial-convex primary lamellae. The evolution of brachidia within individual evolutionary lineages must be clarified because two or more types can be present within a single family. Type-III and Type-IV are closely associated with the prolongation of the crura, representing innovative modifications of the feeding apparatus in response to possible shift in the position of the mouth towards the anterior, allowing for more efficient feeding on particles entering the mantle cavity from the anterior gape. Meanwhile, the modified primary lamellae adjusted/regulated the feeding currents. The absence of spires in some taxa with Type-IV brachidium might suggest that they developed a similar lophophore to that in some extant brachiopods, which can extend out of the shell.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1080
Author(s):  
Min Zhao ◽  
Zhenbo Ning ◽  
Baicun Wang ◽  
Chen Peng ◽  
Xingyu Li ◽  
...  

The evolution and application of intelligence have been discussed from perspectives of life, control theory and artificial intelligence. However, there has been no consensus on understanding the evolution of intelligence. In this study, we propose a Tri-X Intelligence (TI) model, aimed at providing a comprehensive perspective to understand complex intelligence and the implementation of intelligent systems. In this work, the essence and evolution of intelligent systems (or system intelligentization) are analyzed and discussed from multiple perspectives and at different stages (Type I, Type II and Type III), based on a Tri-X Intelligence model. Elemental intelligence based on scientific effects (e.g., conscious humans, cyber entities and physical objects) is at the primitive level of intelligence (Type I). Integrated intelligence formed by two-element integration (e.g., human-cyber systems and cyber-physical systems) is at the normal level of intelligence (Type II). Complex intelligence formed by ternary-interaction (e.g., a human-cyber-physical system) is at the dynamic level of intelligence (Type III). Representative cases are analyzed to deepen the understanding of intelligent systems and their future implementation, such as in intelligent manufacturing. This work provides a systematic scheme, and technical supports, to understand and develop intelligent systems.


Sign in / Sign up

Export Citation Format

Share Document