scholarly journals Electrification in the automotive industry: effects in remanufacturing

Author(s):  
Robert Casper ◽  
Erik Sundin

AbstractThe automotive market is changing. For many years, cars with internal-combustion engines were dominant. Recently, more cars with alternative drive trains have become available, and their market share has increased, a trend that has had an effect on the remanufacturing industry for automotive parts. This paper aims to describe and evaluate the challenges and opportunities in the coming years for the remanufacturing industry as a result of the increasing number and share of electric vehicles. Both theory and empirical data have been used to meet this aim. From theory, the two different drive train concepts of the internal combustion engine and the battery electric vehicle are described, along with the major differences from a remanufacturing standpoint. These differences and effects are described, evaluated, and fully or partly confirmed by industry experts. The results show that future market actors are unset today, less space-consuming machinery parks will be needed, major investments into knowledge and equipment (especially for testing) will be required, and the necessity to handle different kinds of end-of-use/life solutions, especially the recovery for the electric vehicle battery packs, will be a challenge. As future development is still uncertain, the authors recommend that market actors investigate the challenges and opportunities highlighted in this paper and watch future developments carefully.

2012 ◽  
Vol 2 (2) ◽  
Author(s):  
Bogdan Varga

AbstractElectric and hybrid vehicles are going to become the most reliable source of transport for future years. The CO2 and NOx targets in Euro 6 normative puts the producers of vehicles in a dilemma, whether to adapt the internal combustion engines further, or to develop hybrid or electric power trains that are going to reach the pollution limit of the future norms or to go below that. Before acting a well-developed strategy in determining the optimum power flow has to be developed by producers; CRUISE software is a tool with the unique and special characteristics to determine the optimum in this highly important area.Whether electric vehicle, electric vehicle with range extender or a hybrid with CVT or planetary gearbox, the complexity of the mathematical modules remains the same, giving the developer the possibility to create complex functions and distinctive characteristics for each component of the vehicle.With such a powerful tool it becomes extremely easy to evaluate the energy flow in all directions, from electric machine to the battery, from electric machine to the power generator, and from the electric machine to the internal combustion engine. Applying to the (Electric Vehicle, Electric Vehicle with Range Extender, Hybrid vehicle with CVT, Hybrid vehicle with planetary gear set) the ECE-15 in a virtual environment (urban driving cycle) the simulation results show a different usage, rate of storage and efficiency concerning the energy, this being dependent of the power train configuration in most part.


2019 ◽  
Vol 179 (4) ◽  
pp. 169-175
Author(s):  
Marta MACIEJEWSKA ◽  
Paweł FUĆ ◽  
Monika KARDACH

The increasingly restrictive standards related to exhaust emissions from cars make difficult the development of internal combustion engines. The activities undertaken in the design of internal combustion engines are mainly based on downsizing, e.g decreasing the engines displacement. The main direction in the development of vehicle propulsion is to reduce carbon dioxide emissions. It is expected to reduce CO2 emissions in 2020 to reach 95 g/km. Electric vehicles achieve low noise levels and do not emitted a burn, and thus, their use leads to a reduction in the amount of toxic exhaust gases in the air. The aspect of reducing emissions of harmful exhaust compounds and activities focusing on downsizing on the market of combustion engine cars leads to a significant increase the number of electric vehicles. In 2018 around 95 million motor vehicles were registered in the world, of which around 12 million in the European Union and 273 thousand in Poland. The number of electric vehicles among all sold is around 5.5%. Every year new, more technologically advanced models appear on the electric vehicle market. In 2018, the most popular model was the Nissan LEAF and the BAIC EC-Series. A large number of Renault ZOE have also been sold. In article analyzed different models of electric vehicle, which are available on market and presented the characteristics based on e.g. price per 100 kilometers, range for every model or charging time.


2019 ◽  
Vol 125 ◽  
pp. 27-36
Author(s):  
Marek Idzior ◽  
Martin Kornaszewski

The publication contains comments about the future of vehicle drives. The essence of the development of electric drives and the specificity of the construction of electric vehicles are presented. The interest in vehicles powered by electric motors, despite the unquestionable long-term hegemony of vehicles with an internal combustion engine, is growing. This is due to the growing public awareness about the issues of shrinking fossil fuel resources and environmental pollution caused by internal combustion engines. The development of electrotechnics related to computerization gives car designers a wide field to develop the concept of an electric motor. With simultaneous market demand for vehicles with the lowest possible emissions, electric vehicles have found interest in the commercial market, and the value of this industry and the percentage share in the automotive market is gradually increasing.


Author(s):  
Oleksandr Gryshchuk ◽  
Volodymyr Hladchenko ◽  
Uriy Overchenko

This article looks at some comparative statistics on the development and use of electric vehicles (hereinafter referred to as EM) as an example of sales and future sales forecasts for EM in countries that focus on environmental conservation. Examples of financial investments already underway and to be made in the near future by the largest automakers in the development and distribution of EM in the world are given. Steps are taken to improve the environmental situation in countries (for example, the prohibition of entry into the city center), the scientific and applied problem of improving the energy efficiency and environmental safety of the operation of wheeled vehicles (hereinafter referred to as the CTE). The basic and more widespread schemes of conversion of the internal combustion engine car (hereinafter -ICE) to the electric motor car (by replacing the gasoline or diesel electric motor), as well as the main requirements that must be observed for the safe use and operation of the electric vehicle. The problem is solved by justifying the feasibility of re-equipment of the KTZ by replacing the internal combustion engine with an electric motor. On the basis of the statistics collected by the State Automobile Transit Research Institute on the number of issued conclusions of scientific and technical expertise regarding the approval of the possibility of conversion of a car with an internal combustion engine (gasoline or diesel) to a car with an electric motor (electric vehicle), the conclusions on the feasibility of such conclusion were made. Keywords: electricvehicles, ecological safety, electricmotor, statistics provided, car, vehicle by replacing.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 996
Author(s):  
Venera Giurcan ◽  
Codina Movileanu ◽  
Adina Magdalena Musuc ◽  
Maria Mitu

Currently, the use of fossil fuels is very high and existing nature reserves are rapidly depleted. Therefore, researchers are turning their attention to find renewable fuels that have a low impact on the environment, to replace these fossil fuels. Biogas is a low-cost alternative, sustainable, renewable fuel existing worldwide. It can be produced by decomposition of vegetation or waste products of human and animal biological activity. This process is performed by microorganisms (such as methanogens and sulfate-reducing bacteria) by anaerobic digestion. Biogas can serve as a basis for heat and electricity production used for domestic heating and cooking. It can be also used to feed internal combustion engines, gas turbines, fuel cells, or cogeneration systems. In this paper, a comprehensive literature study regarding the laminar burning velocity of biogas-containing mixtures is presented. This study aims to characterize the use of biogas as IC (internal combustion) engine fuel, and to develop efficient safety recommendations and to predict and reduce the risk of fires and accidental explosions caused by biogas.


2021 ◽  
Vol 13 (3) ◽  
pp. 1319
Author(s):  
Manel Arribas-Ibar ◽  
Petra Nylund ◽  
Alexander Brem

Innovation ecosystems evolve and adapt to crises, but what are the factors that stimulate ecosystem growth in spite of dire circumstances? We study the arduous path forward of the electric vehicle (EV) ecosystem and analyse in depth those factors that influence ecosystem growth in general and during the pandemic in particular. For the EV ecosystem, growth implies outcompeting the less sustainable internal combustion engine (ICE) vehicles, thus achieving a transition towards sustainable transportation. New mobility patterns provide a strategic opportunity for such a shift to green mobility and for EV ecosystem growth. For innovation ecosystems in general, we suggest that a crisis can serve as an opportunity for new innovations to break through by disrupting prior behavioural patterns. For the EV ecosystem in particular, it remains to be seen if the ecosystem will be able to capitalize on the opportunity provided by the unfortunate disruption generated by the pandemic.


2021 ◽  
Vol 1 ◽  
pp. 477-486
Author(s):  
Vahid Douzloo Salehi

AbstractHydrogen is a promising fuel to fulfil climate goals and future legislation requirements due to its carbon-free property. Especially hydrogen fueled buses and heavy-duty vehicles (HDVs) strongly move into the foreground. In contrast to the hydrogen-based fuel cell technology, which is already in commercial use, vehicles with hydrogen internal combustion engines (H2-ICE) are also a currently pursued field of research, representing a potentially holistic carbon-free drive train. Real applications of H2-ICE vehicles are currently not known but can be expected, since their suitability is put to test in a few insolated projects at this time. This paper provides a literature survey to reflect the current state of H2-ICEs focused on city buses. An extended view to HDVs and fuel cell technology allows to recognize trends in hydrogen transport sector, to identify further research potential and to derive useful conclusion. In addition, within this paper we apply green MAGIC as a holistic approach and discuss Well-to-Tank green hydrogen supply in relation to a H2-ICE city bus. Building on that, we introduce the upcoming Hydrogen-bus project, where tests of H2-ICE buses in real driving mode are foreseen to investigate Tank-to-Wheel.


Author(s):  
Jiang Lu ◽  
Ashwani K. Gupta ◽  
Eugene L. Keating

Abstract Numerical simulation of flow, combustion, heat release rate and pollutants emission characteristics have been obtained using a single cylinder internal combustion engine operating with propane as the fuel. The data are compared with experimental results and show excellent agreement for peak pressure and the rate of pressure rise as a function of crank angle. The results obtained for NO and CO are also found to be in good agreement and are similar to those reported in the literature for the chosen combustion chamber geometry. The results have shown that both the combustion chamber geometry and engine operating parameters affects the flame growth within the combustion chamber which subsequently affects the pollutants emission levels. The code employed the time marching procedure and solves the governing partial differential equations of multi-component chemically reacting fluid flow by finite difference method. The numerical results provide a cost effective means of developing advanced internal combustion engine chamber geometry design that provides high efficiency and low pollution levels. It is expected that increased computational tools will be used in the future for enhancing our understanding of the detailed combustion process in internal combustion engines and all other energy conversion systems. Such detailed information is critical for the development of advanced methods for energy conservation and environmental pollution control.


Author(s):  
Federico Perini ◽  
Anand Krishnasamy ◽  
Youngchul Ra ◽  
Rolf D. Reitz

The need for more efficient and environmentally sustainable internal combustion engines is driving research towards the need to consider more realistic models for both fuel physics and chemistry. As far as compression ignition engines are concerned, phenomenological or lumped fuel models are unreliable to capture spray and combustion strategies outside of their validation domains — typically, high-pressure injection and high-temperature combustion. Furthermore, the development of variable-reactivity combustion strategies also creates the need to model comprehensively different hydrocarbon families even in single fuel surrogates. From the computational point of view, challenges to achieving practical simulation times arise from the dimensions of the reaction mechanism, that can be of hundreds species even if hydrocarbon families are lumped into representative compounds, and thus modeled with non-elementary, skeletal reaction pathways. In this case, it is also impossible to pursue further mechanism reductions to lower dimensions. CPU times for integrating chemical kinetics in internal combustion engine simulations ultimately scale with the number of cells in the grid, and with the cube number of species in the reaction mechanism. In the present work, two approaches to reduce the demands of engine simulations with detailed chemistry are presented. The first one addresses the demands due to the solution of the chemistry ODE system, and features the adoption of SpeedCHEM, a newly developed chemistry package that solves chemical kinetics using sparse analytical Jacobians. The second one aims to reduce the number of chemistry calculations by binning the CFD cells of the engine grid into a subset of clusters, where chemistry is solved and then mapped back to the original domain. In particular, a high-dimensional representation of the chemical state space is adopted for keeping track of the different fuel components, and a newly developed bounding-box-constrained k-means algorithm is used to subdivide the cells into reactively homogeneous clusters. The approaches have been tested on a number of simulations featuring multi-component diesel fuel surrogates, and different engine grids. The results show that significant CPU time reductions, of about one order of magnitude, can be achieved without loss of accuracy in both engine performance and emissions predictions, prompting for their applicability to more refined or full-sized engine grids.


Sign in / Sign up

Export Citation Format

Share Document