scholarly journals Searching for new molecular markers for cells obtained from abdominal aortic aneurysm

Author(s):  
Marta Lesiak ◽  
Aleksandra Augusciak-Duma ◽  
Karolina L. Stepien ◽  
Agnieszka Fus-Kujawa ◽  
Malwina Botor ◽  
...  

AbstractThe aim of the study was to investigate specific potential markers for cells obtained from three layers of human AAA divided into three segments along the AAA based on morphological differences. The isolated cells were compared to control commercial cell types from healthy human abdominal aortas. For each type of aortic layer, three specimens from 6 patients were compared. Total RNA was isolated from 36 cell cultures for gene expression profiling and potential new cytometry markers were typed. Isolated cells were analyzed by flow cytometry by using fluorochrome-conjugated antibodies to markers: CNN1, MYH10, ENG, ICAM2, and TEK. The relative expression of 45 genes in primary cell cultures and control lines was analyzed. Statistically significant differences were found in the expression of most of the analyzed genes between individual layers and control lines. Based on relative expression, antibodies were selected for flow cytometry. Gene expression profiles allowed to select new potential cytometry markers: CNN1, MYH10, MYOCD, ENG, ICAM2, TEK. However, none of the tested markers seems to be optimal and characteristic for a specific layer of AAA.

2020 ◽  
Vol 20 (12) ◽  
pp. 1487-1496 ◽  
Author(s):  
Midori Murakami ◽  
Hiroto Izumi ◽  
Tomoko Kurita ◽  
Chiho Koi ◽  
Yasuo Morimoto ◽  
...  

Background: Cisplatin is an important anticancer agent in cancer chemotherapy, but when resistant cells appear, treatment becomes difficult, and the prognosis is poor. Objective: In this study, we investigated the gene expression profile in cisplatin sensitive and resistant cells, and identified the genes involved in cisplatin resistance. Methods: Comparison of gene expression profiles revealed that UBE2L6 mRNA is highly expressed in resistant cells. To elucidate whether UBE2L6 is involved in the acquisition of cisplatin resistance, UBE2L6- overexpressing cells established from cisplatin-sensitive cells and UBE2L6-silenced cells developed from cisplatin- resistant cells were generated, and the sensitivity of cisplatin was examined. Results: The sensitivity of the UBE2L6-overexpressing cells did not change compared with the control cells, but the UBE2L6-silenced cells were sensitized to cisplatin. To elucidate the mechanism of UBE2L6 in cisplatin resistance, we compared the gene expression profiles of UBE2L6-silenced cells and control cells and found that the level of ABCB6 mRNA involved in cisplatin resistance was decreased. Moreover, ABCB6 promoter activity was partially suppressed in UBE2L6-silenced cells. Conclusion: These results suggest that cisplatin-resistant cells have upregulated UBE2L6 expression and contribute to cisplatin resistance by regulating ABCB6 expression at the transcriptional level. UBE2L6 might be a molecular target that overcomes cisplatin resistance.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bing He ◽  
Ping Chen ◽  
Sonia Zambrano ◽  
Dina Dabaghie ◽  
Yizhou Hu ◽  
...  

AbstractMolecular characterization of the individual cell types in human kidney as well as model organisms are critical in defining organ function and understanding translational aspects of biomedical research. Previous studies have uncovered gene expression profiles of several kidney glomerular cell types, however, important cells, including mesangial (MCs) and glomerular parietal epithelial cells (PECs), are missing or incompletely described, and a systematic comparison between mouse and human kidney is lacking. To this end, we use Smart-seq2 to profile 4332 individual glomerulus-associated cells isolated from human living donor renal biopsies and mouse kidney. The analysis reveals genetic programs for all four glomerular cell types (podocytes, glomerular endothelial cells, MCs and PECs) as well as rare glomerulus-associated macula densa cells. Importantly, we detect heterogeneity in glomerulus-associated Pdgfrb-expressing cells, including bona fide intraglomerular MCs with the functionally active phagocytic molecular machinery, as well as a unique mural cell type located in the central stalk region of the glomerulus tuft. Furthermore, we observe remarkable species differences in the individual gene expression profiles of defined glomerular cell types that highlight translational challenges in the field and provide a guide to design translational studies.


2008 ◽  
Vol 180 (6) ◽  
pp. 2681-2687 ◽  
Author(s):  
Deborah R. Erickson ◽  
Steven R. Schwarze ◽  
Justin K. Dixon ◽  
Curtis J. Clark ◽  
Matt A. Hersh

Author(s):  
Ana M. Sotoca ◽  
Michael Weber ◽  
Everardus J. J. van Zoelen

Human mesenchymal stem cells have a high potential in regenerative medicine. They can be isolated from a variety of adult tissues, including bone marrow, and can be differentiated into multiple cell types of the mesodermal lineage, including adipocytes, osteocytes, and chondrocytes. Stem cell differentiation is controlled by a process of interacting lineage-specific and multipotent genes. In this chapter, the authors use full genome microarrays to explore gene expression profiles in the process of Osteo-, Adipo-, and Chondro-Genic lineage commitment of human mesenchymal stem cells.


2020 ◽  
Vol 7 (5) ◽  
pp. 881-896 ◽  
Author(s):  
Dongxu He ◽  
Aiqin Mao ◽  
Chang-Bo Zheng ◽  
Hao Kan ◽  
Ka Zhang ◽  
...  

Abstract The aorta, with ascending, arch, thoracic and abdominal segments, responds to the heartbeat, senses metabolites and distributes blood to all parts of the body. However, the heterogeneity across aortic segments and how metabolic pathologies change it are not known. Here, a total of 216 612 individual cells from the ascending aorta, aortic arch, and thoracic and abdominal segments of mouse aortas under normal conditions or with high blood glucose levels, high dietary salt, or high fat intake were profiled using single-cell RNA sequencing. We generated a compendium of 10 distinct cell types, mainly endothelial (EC), smooth muscle (SMC), stromal and immune cells. The distributions of the different cells and their intercommunication were influenced by the hemodynamic microenvironment across anatomical segments, and the spatial heterogeneity of ECs and SMCs may contribute to differential vascular dilation and constriction that were measured by wire myography. Importantly, the composition of aortic cells, their gene expression profiles and their regulatory intercellular networks broadly changed in response to high fat/salt/glucose conditions. Notably, the abdominal aorta showed the most dramatic changes in cellular composition, particularly involving ECs, fibroblasts and myeloid cells with cardiovascular risk factor-related regulons and gene expression networks. Our study elucidates the nature and range of aortic cell diversity, with implications for the treatment of metabolic pathologies.


2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 10036-10036
Author(s):  
H. G. Hass ◽  
J. Jobst ◽  
O. Nehls ◽  
A. Frilling ◽  
J. T. Hartmann ◽  
...  

10036 Background: Cholangiocarcinomas (CCC) are the second most common primary hepatic malignancy with a still poor prognosis and arise from biliary epithelia or cholangiocytes. Until now, less is known about the molecular pathways leeding to CCC. Methods: Oligonucleotide arrays were used to analyze gene expression profiles of 8 intrahepatic CCCs. After isolation of tRNA and transcription into cDNA, biotin-labelled cRNA probes were hybridized to GeneArrays (Affymetrix U 133A) containing probes of more than 22.000 genes/ESTs. For two-dimensional cluster analysis we used special software programs (Genexplore, GeneSpring). Dysregulated genes were determined by presence in more than 70% and a 2-fold change in relation to the corresponding non-malignant liver tissue. Lightcycler analysis were performed to validate the expression datas of dysregulated genes. Results: A total of 694 dysregulated genes (330 up-/364 down-regulated, compared with corresponding non-malignant tissue) were detected. As the gene with the highest and most consistent upregulation we were able to identify osteopontin (OPN) with an average 5-fold overexpression in all CCC tissues. OPN is an acidic phosphoprotein that is secreted by osteoblasts, macrophages and many other cell types and binds to a variety of cell surface receptors (integrins/CD44). OPN is multifunctional, with activities in cell migration, regulation of bone metabolism, immune cell function and control of tumor cell phenotype. Elevated OPN levels were seen in different tumors but until now no data exist about the expression in CCCs. As one possible interaction in human carcinogenesis, OPN has recently been shown to be a novel substrate for some MMPs, which play an importand role in tumor invasion and metastasis. Conclusions: This is the first report about an overexpression of OPN in CCC and our data indicate an important role in cholangiocarcinogenesis. Further studies are needed to illucidate the moleculargenetic mechanisms of OPN interactions in CCC. No significant financial relationships to disclose.


2005 ◽  
Vol 73 (4) ◽  
pp. 2327-2335 ◽  
Author(s):  
Yumiko Hosogi ◽  
Margaret J. Duncan

ABSTRACT Porphyromonas gingivalis, a gram-negative oral anaerobe, is strongly associated with adult periodontitis. The adherence of the organism to host epithelium signals changes in both cell types as bacteria initiate infection and colonization and epithelial cells rally their defenses. We hypothesized that the expression of a defined set of P. gingivalis genes would be consistently up-regulated during infection of HEp-2 human epithelial cells. P. gingivalis genome microarrays were used to compare the gene expression profiles of bacteria that adhered to HEp-2 cells and bacteria that were incubated alone. Genes whose expression was temporally up-regulated included those involved in the oxidative stress response and those encoding heat shock proteins that are essential to maintaining cell viability under adverse conditions. The results suggest that contact with epithelial cells induces in P. gingivalis stress-responsive pathways that promote the survival of the bacterium.


2019 ◽  
Author(s):  
Arnav Moudgil ◽  
Michael N. Wilkinson ◽  
Xuhua Chen ◽  
June He ◽  
Alex J. Cammack ◽  
...  

AbstractIn situ measurements of transcription factor (TF) binding are confounded by cellular heterogeneity and represent averaged profiles in complex tissues. Single cell RNA-seq (scRNA-seq) is capable of resolving different cell types based on gene expression profiles, but no technology exists to directly link specific cell types to the binding pattern of TFs in those cell types. Here, we present self-reporting transposons (SRTs) and their use in single cell calling cards (scCC), a novel assay for simultaneously capturing gene expression profiles and mapping TF binding sites in single cells. First, we show how the genomic locations of SRTs can be recovered from mRNA. Next, we demonstrate that SRTs deposited by the piggyBac transposase can be used to map the genome-wide localization of the TFs SP1, through a direct fusion of the two proteins, and BRD4, through its native affinity for piggyBac. We then present the scCC method, which maps SRTs from scRNA-seq libraries, thus enabling concomitant identification of cell types and TF binding sites in those same cells. As a proof-of-concept, we show recovery of cell type-specific BRD4 and SP1 binding sites from cultured cells. Finally, we map Brd4 binding sites in the mouse cortex at single cell resolution, thus establishing a new technique for studying TF biology in situ.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bárbara Andrade Barbosa ◽  
Saskia D. van Asten ◽  
Ji Won Oh ◽  
Arantza Farina-Sarasqueta ◽  
Joanne Verheij ◽  
...  

AbstractDeconvolution of bulk gene expression profiles into the cellular components is pivotal to portraying tissue’s complex cellular make-up, such as the tumor microenvironment. However, the inherently variable nature of gene expression requires a comprehensive statistical model and reliable prior knowledge of individual cell types that can be obtained from single-cell RNA sequencing. We introduce BLADE (Bayesian Log-normAl Deconvolution), a unified Bayesian framework to estimate both cellular composition and gene expression profiles for each cell type. Unlike previous comprehensive statistical approaches, BLADE can handle > 20 types of cells due to the efficient variational inference. Throughout an intensive evaluation with > 700 simulated and real datasets, BLADE demonstrated enhanced robustness against gene expression variability and better completeness than conventional methods, in particular, to reconstruct gene expression profiles of each cell type. In summary, BLADE is a powerful tool to unravel heterogeneous cellular activity in complex biological systems from standard bulk gene expression data.


2021 ◽  
Author(s):  
Nimrod Bernat ◽  
Rianne Campbell ◽  
Hyungwoo Nam ◽  
Mahashweta Basu ◽  
Tal Odesser ◽  
...  

The ventral pallidum (VP), a major component of the basal ganglia, plays a critical role in motivational disorders. It sends projections to many different brain regions but it is not yet known whether and how these projections differ in their cellular properties, gene expression patterns, connectivity and role in reward seeking. In this study, we focus on four major outputs of the VP - to the lateral hypothalamus (LH), ventral tegmental area (VTA), mediodorsal thalamus (MDT), and lateral habenula (LHb) - and examine the differences between them in 1) baseline gene expression profiles using projection-specific RNA-sequencing; 2) physiological parameters using whole-cell patch clamp; and 3) their influence on cocaine reward using chemogenetic tools. We show that these four VP efferents differ in all three aspects and highlight specifically differences between the projections to the LH and the VTA. These two projections originate largely from separate populations of neurons, express distinct sets of genes related to neurobiological functions, and show opposite physiological and behavioral properties. Collectively, our data demonstrates for the first time that VP neurons exhibit distinct molecular and cellular profiles in a projection-specific manner, suggesting that they represent different cell types.


Sign in / Sign up

Export Citation Format

Share Document