Cerebral hemorrhage detection and localization with medical imaging for cerebrovascular disease diagnosis and treatment using explainable deep learning

Author(s):  
Kwang Hyeon Kim ◽  
Hae-Won Koo ◽  
Byung-Jou Lee ◽  
Sang-Won Yoon ◽  
Moon-Jun Sohn
Author(s):  
Kanchan Sarkar ◽  
Bohang Li

Pixel accurate 2-D, 3-D medical image segmentation to identify abnormalities for further analysis is on high demand for computer-aided medical imaging applications. Various segmentation algorithms have been studied and applied in medical imaging for many years, but the problem remains challenging due to growing a large number of variety of applications starting from lung disease diagnosis based on x-ray images, nucleus detection, and segmentation based on microscopic pictures to kidney tumour segmentation. The recent innovation in deep learning brought revolutionary advances in computer vision. Image segmentation is one such area where deep learning shows its capacity and improves the performance by a larger margin than its successor. This chapter overviews the most popular deep learning-based image segmentation techniques and discusses their capabilities and basic advantages and limitations in the domain of medical imaging.


2016 ◽  
Vol 18 (2) ◽  
pp. 85-94 ◽  
Author(s):  
I.A. Shchukin ◽  
◽  
A.V. Lebedeva ◽  
S.G. Burd ◽  
M.S. Fidler ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5097 ◽  
Author(s):  
Satya P. Singh ◽  
Lipo Wang ◽  
Sukrit Gupta ◽  
Haveesh Goli ◽  
Parasuraman Padmanabhan ◽  
...  

The rapid advancements in machine learning, graphics processing technologies and the availability of medical imaging data have led to a rapid increase in the use of deep learning models in the medical domain. This was exacerbated by the rapid advancements in convolutional neural network (CNN) based architectures, which were adopted by the medical imaging community to assist clinicians in disease diagnosis. Since the grand success of AlexNet in 2012, CNNs have been increasingly used in medical image analysis to improve the efficiency of human clinicians. In recent years, three-dimensional (3D) CNNs have been employed for the analysis of medical images. In this paper, we trace the history of how the 3D CNN was developed from its machine learning roots, we provide a brief mathematical description of 3D CNN and provide the preprocessing steps required for medical images before feeding them to 3D CNNs. We review the significant research in the field of 3D medical imaging analysis using 3D CNNs (and its variants) in different medical areas such as classification, segmentation, detection and localization. We conclude by discussing the challenges associated with the use of 3D CNNs in the medical imaging domain (and the use of deep learning models in general) and possible future trends in the field.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shaohui Wang ◽  
Ya Hou ◽  
Xuanhao Li ◽  
Xianli Meng ◽  
Yi Zhang ◽  
...  

Rheumatoid arthritis (RA), an autoimmune disease of unknown etiology, is a serious threat to the health of middle-aged and elderly people. Although western medicine, traditional medicine such as traditional Chinese medicine, Tibetan medicine and other ethnic medicine have shown certain advantages in the diagnosis and treatment of RA, there are still some practical shortcomings, such as delayed diagnosis, improper treatment scheme and unclear drug mechanism. At present, the applications of artificial intelligence (AI)-based deep learning and cloud computing has aroused wide attention in the medical and health field, especially in screening potential active ingredients, targets and action pathways of single drugs or prescriptions in traditional medicine and optimizing disease diagnosis and treatment models. Integrated information and analysis of RA patients based on AI and medical big data will unquestionably benefit more RA patients worldwide. In this review, we mainly elaborated the application status and prospect of AI-assisted deep learning and cloud computation-oriented western medicine and traditional medicine on the diagnosis and treatment of RA in different stages. It can be predicted that with the help of AI, more pharmacological mechanisms of effective ethnic drugs against RA will be elucidated and more accurate solutions will be provided for the treatment and diagnosis of RA in the future.


2018 ◽  
Vol 9 (1) ◽  
pp. 8
Author(s):  
Bernardo Almeida

Snapping hip syndrome is a condition in which the predominant symptom is the snapping feelingaround the hip joint caused by a dynamic impingement between muscles or tendons and boneprominences. The etiology of the snapping hip types and consequently the therapeutic targets havebeen subjects of discussion and controversy along the years. A careful clinical history and physicalexamination is frequently enough for this disease diagnosis. Treatment is typically conservative,however when it is not successful surgical treatment is indicated, consisting on the snapping muscleor tendons lengthening. The authors review in this paper the current scientific literature about functionalanatomy, physiopathology, symptoms, diagnosis and treatment of snapping hip.


2020 ◽  
Vol 15 ◽  
Author(s):  
Deeksha Saxena ◽  
Mohammed Haris Siddiqui ◽  
Rajnish Kumar

Background: Deep learning (DL) is an Artificial neural network-driven framework with multiple levels of representation for which non-linear modules combined in such a way that the levels of representation can be enhanced from lower to a much abstract level. Though DL is used widely in almost every field, it has largely brought a breakthrough in biological sciences as it is used in disease diagnosis and clinical trials. DL can be clubbed with machine learning, but at times both are used individually as well. DL seems to be a better platform than machine learning as the former does not require an intermediate feature extraction and works well with larger datasets. DL is one of the most discussed fields among the scientists and researchers these days for diagnosing and solving various biological problems. However, deep learning models need some improvisation and experimental validations to be more productive. Objective: To review the available DL models and datasets that are used in disease diagnosis. Methods: Available DL models and their applications in disease diagnosis were reviewed discussed and tabulated. Types of datasets and some of the popular disease related data sources for DL were highlighted. Results: We have analyzed the frequently used DL methods, data types and discussed some of the recent deep learning models used for solving different biological problems. Conclusion: The review presents useful insights about DL methods, data types, selection of DL models for the disease diagnosis.


2021 ◽  
Vol 49 (1) ◽  
pp. 030006052098284
Author(s):  
Tingting Qiao ◽  
Simin Liu ◽  
Zhijun Cui ◽  
Xiaqing Yu ◽  
Haidong Cai ◽  
...  

Objective To construct deep learning (DL) models to improve the accuracy and efficiency of thyroid disease diagnosis by thyroid scintigraphy. Methods We constructed DL models with AlexNet, VGGNet, and ResNet. The models were trained separately with transfer learning. We measured each model’s performance with six indicators: recall, precision, negative predictive value (NPV), specificity, accuracy, and F1-score. We also compared the diagnostic performances of first- and third-year nuclear medicine (NM) residents with assistance from the best-performing DL-based model. The Kappa coefficient and average classification time of each model were compared with those of two NM residents. Results The recall, precision, NPV, specificity, accuracy, and F1-score of the three models ranged from 73.33% to 97.00%. The Kappa coefficient of all three models was >0.710. All models performed better than the first-year NM resident but not as well as the third-year NM resident in terms of diagnostic ability. However, the ResNet model provided “diagnostic assistance” to the NM residents. The models provided results at speeds 400 to 600 times faster than the NM residents. Conclusion DL-based models perform well in diagnostic assessment by thyroid scintigraphy. These models may serve as tools for NM residents in the diagnosis of Graves’ disease and subacute thyroiditis.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Malte Seemann ◽  
Lennart Bargsten ◽  
Alexander Schlaefer

AbstractDeep learning methods produce promising results when applied to a wide range of medical imaging tasks, including segmentation of artery lumen in computed tomography angiography (CTA) data. However, to perform sufficiently, neural networks have to be trained on large amounts of high quality annotated data. In the realm of medical imaging, annotations are not only quite scarce but also often not entirely reliable. To tackle both challenges, we developed a two-step approach for generating realistic synthetic CTA data for the purpose of data augmentation. In the first step moderately realistic images are generated in a purely numerical fashion. In the second step these images are improved by applying neural domain adaptation. We evaluated the impact of synthetic data on lumen segmentation via convolutional neural networks (CNNs) by comparing resulting performances. Improvements of up to 5% in terms of Dice coefficient and 20% for Hausdorff distance represent a proof of concept that the proposed augmentation procedure can be used to enhance deep learning-based segmentation for artery lumen in CTA images.


Sign in / Sign up

Export Citation Format

Share Document