scholarly journals Regenerative Engineering Animal Models for Knee Osteoarthritis

Author(s):  
Caldon Jayson Esdaille ◽  
Chinedu Cletus Ude ◽  
Cato T. Laurencin

Abstract Osteoarthritis (OA) of the knee is the most common synovial joint disorder worldwide, with a growing incidence due to increasing rates of obesity and an aging population. A significant amount of research is currently being conducted to further our understanding of the pathophysiology of knee osteoarthritis to design less invasive and more effective treatment options once conservative management has failed. Regenerative engineering techniques have shown promising preclinical results in treating OA due to their innovative approaches and have emerged as a popular area of study. To investigate these therapeutics, animal models of OA have been used in preclinical trials. There are various mechanisms by which OA can be induced in the knee/stifle of animals that are classified by the etiology of the OA that they are designed to recapitulate. Thus, it is essential to utilize the correct animal model in studies that are investigating regenerative engineering techniques for proper translation of efficacy into clinical trials. This review discusses the various animal models of OA that may be used in preclinical regenerative engineering trials and the corresponding classification system. Lay Summary Osteoarthritis (OA) of the knee is the most common synovial joint disease worldwide, with high rates of occurrence due to an increase in obesity and an aging population. A great deal of research is currently underway to further our understanding of the causes of osteoarthritis, to design more effective treatments. The emergence of regenerative engineering has provided physicians and investigators with unique opportunities to join ideas in tackling human diseases such as OA. Once the concept is proven to work, the initial procedure for the evaluation of a treatment solution begins with an animal model. Thus, it is essential to utilize a suitable animal model that reflects the particular ailment in regenerative engineering studies for proper translation to human patients as each model has associated advantages and disadvantages. There are various ways by which OA can occur in the knee joint, which are classified according to the particular cause of the OA. This review discusses the various animal models of OA that may be used in preclinical regenerative engineering investigations and the corresponding classification system.

2015 ◽  
Vol 28 (2) ◽  
pp. 133-142 ◽  
Author(s):  
D. T. Reid ◽  
B. Eksteen

AbstractAssociated with the obesity epidemic, non-alcoholic fatty liver disease (NAFLD) has become the leading liver disease in North America. Approximately 30 % of patients with NAFLD may develop non-alcoholic steatohepatitis (NASH) that can lead to cirrhosis and hepatocellular carcinoma (HCC). Frequently animal models are used to help identify underlying factors contributing to NAFLD including insulin resistance, dysregulated lipid metabolism and mitochondrial stress. However, studying the inflammatory, progressive nature of NASH in the context of obesity has proven to be a challenge in mice. Although the development of effective treatment strategies for NAFLD and NASH is gaining momentum, the field is hindered by a lack of a concise animal model that reflects the development of liver disease during obesity and the metabolic syndrome. Therefore, selecting an animal model to study NAFLD or NASH must be done carefully to ensure the optimal application. The most widely used animal models have been reviewed highlighting their advantages and disadvantages to studying NAFLD and NASH specifically in the context of obesity.


2016 ◽  
Vol 8 (7) ◽  
pp. 1
Author(s):  
Richard R. E. Uwiera ◽  
Trina C. Uwiera ◽  
Janelle A. Jiminez ◽  
G. Douglas Inglis

<p>This article examines several animal models used to investigate mechanisms involved in the induction and progression of inflammatory bowel disease in people. The use of appropriate animal models to study intestinal inflammation requires careful consideration as each model has strengths and limitations for investigating disease, and no single model provides a complete understanding of the disease process. In as such, it compels researchers to carefully contemplate the advantages and disadvantages of each animal model, and to consider the process of choosing the best animal model(s) as an essential component of the experimental design.</p>


2019 ◽  
Vol 20 (19) ◽  
pp. 4827 ◽  
Author(s):  
Yuanzhen Hao ◽  
Huixiang Ge ◽  
Mengyun Sun ◽  
Yun Gao

Depression has become one of the most severe psychiatric disorders and endangers the health of living beings all over the world. In order to explore the molecular mechanism that underlies depression, different kinds of animal models of depression are used in laboratory experiments. However, a credible and reasonable animal model that is capable of imitating the pathologic mechanism of depression in mankind has yet to be found, resulting in a barrier to further investigation of depression. Nevertheless, it is possible to explain the pathologic mechanism of depression to a great extent by a rational modeling method and behavioral testing. This review aims to provide a reference for researchers by comparing the advantages and disadvantages of some common animal depression models.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Xiangbo Meng ◽  
Reihane Ziadlou ◽  
Sibylle Grad ◽  
Mauro Alini ◽  
Chunyi Wen ◽  
...  

The treatment of osteochondral defects (OCD) remains a great challenge in orthopaedics. Tissue engineering holds a good promise for regeneration of OCD. In the light of tissue engineering, it is critical to establish an appropriate animal model to evaluate the degradability, biocompatibility, and interaction of implanted biomaterials with host bone/cartilage tissues for OCD repair in vivo. Currently, model animals that are commonly deployed to create osteochondral lesions range from rats, rabbits, dogs, pigs, goats, and sheep horses to nonhuman primates. It is essential to understand the advantages and disadvantages of each animal model in terms of the accuracy and effectiveness of the experiment. Therefore, this review aims to introduce the common animal models of OCD for testing biomaterials and to discuss their applications in translational research. In addition, we have reviewed surgical protocols for establishing OCD models and biomaterials that promote osteochondral regeneration. For small animals, the non-load-bearing region such as the groove of femoral condyle is commonly chosen for testing degradation, biocompatibility, and interaction of implanted biomaterials with host tissues. For large animals, closer to clinical application, the load-bearing region (medial femoral condyle) is chosen for testing the durability and healing outcome of biomaterials. This review provides an important reference for selecting a suitable animal model for the development of new strategies for osteochondral regeneration.


2018 ◽  
Vol 1 (3) ◽  
Author(s):  
Ruilian Liu ◽  
Honglin Qu

Objective This paper analysis amount of literature about domestic and abroad with establishing the animal model of AD as the basics point of the research, and explore the construction of animal models of AD and the theoretical basis of the study. The purpose of the paper was to better probe AD Pathogenesis and etiology, and how to take appropriate intervention methods to lay the foundation. Methods Results Following the analysis, we found that the animal models of AD were mainly modeled by transgenic animal model, modeled by AD histopathological features, cholinergic nerve injury, aging, multifactorial complex, and ischemia and hypoxia. Each modeling method was based on the corresponding theoretical research carried out on the basis of the current research, however, the exact pathogenesis of AD was not clear, so the scholars in a variety of hypotheses on the premise Under the experimental animal model, naturally with a certain degree of one-sidedness. Transgenic animal model is expensive, disease resistance was poor, it was difficult to carry out a large amount of experimental study; cholinergic neuron damage in AD experimental animals for cholinergic function impairment and cognitive function of the ideal study. Conclusions The modeling method of AD had many advantages and disadvantages, and the compound animal model of AD was more complex than single factor modeling. Thus, no matter which way AD animal model, it was difficult to replicate all the typical pathological changes in AD, suggesting that the pathogenesis of AD and its pathological changes in the complexity and multi-factor.


2021 ◽  
Author(s):  
Panyun Mu ◽  
Peihua Qu ◽  
Yulin Li ◽  
Jie Feng ◽  
Xu Ma ◽  
...  

Abstract Background: it is of great significance for clinical diagnosis, prevention and treatment of osteoporosis to deeply understand the pathogenesis and development process of osteoporosis through animal models of osteoporosis. This systematic review aim to summarize the modeling methods of osteoporosis, reveal the current situation and progress of animal models of osteoporosis, and compare the advantages and disadvantages of various modeling methods, so as to provide reference for clinical research.Methods: CNKI, CBM database, VIP database, Wanfang database, PubMed database and EMBASE database were searched by computer from the database establishment to December 2020 with the key words of "animal model; osteoporosis" in Chinese and English respectively. The literatures were screened according to inclusion and exclusion criteria. The methods of osteoporosis modeling, the improvement of the methods and the advantages and disadvantages of each method are summarized.Discussion: a total of 9303 related literatures were collected, and 112 eligible literatures were included. The establishment of an appropriate animal model is the key to the etiology, pathophysiology and drug therapy of osteoporosis. As the causes and pathophysiological changes of different types of OP have their own characteristics, the modeling methods are also different. Therefore, different modeling methods and experimental animals should be selected according to different experimental requirements.Systematic review registration: No


2015 ◽  
Vol 223 (3) ◽  
pp. 157-164 ◽  
Author(s):  
Georg Juckel

Abstract. Inflammational-immunological processes within the pathophysiology of schizophrenia seem to play an important role. Early signals of neurobiological changes in the embryonal phase of brain in later patients with schizophrenia might lead to activation of the immunological system, for example, of cytokines and microglial cells. Microglia then induces – via the neurotoxic activities of these cells as an overreaction – a rarification of synaptic connections in frontal and temporal brain regions, that is, reduction of the neuropil. Promising inflammational animal models for schizophrenia with high validity can be used today to mimic behavioral as well as neurobiological findings in patients, for example, the well-known neurochemical alterations of dopaminergic, glutamatergic, serotonergic, and other neurotransmitter systems. Also the microglial activation can be modeled well within one of this models, that is, the inflammational PolyI:C animal model of schizophrenia, showing a time peak in late adolescence/early adulthood. The exact mechanism, by which activated microglia cells then triggers further neurodegeneration, must now be investigated in broader detail. Thus, these animal models can be used to understand the pathophysiology of schizophrenia better especially concerning the interaction of immune activation, inflammation, and neurodegeneration. This could also lead to the development of anti-inflammational treatment options and of preventive interventions.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4221
Author(s):  
Aage Kristian Olsen Alstrup ◽  
Svend Borup Jensen ◽  
Ole Lerberg Nielsen ◽  
Lars Jødal ◽  
Pia Afzelius

The development of new and better radioactive tracers capable of detecting and characterizing osteomyelitis is an ongoing process, mainly because available tracers lack selectivity towards osteomyelitis. An integrated part of developing new tracers is the performance of in vivo tests using appropriate animal models. The available animal models for osteomyelitis are also far from ideal. Therefore, developing improved animal osteomyelitis models is as important as developing new radioactive tracers. We recently published a review on radioactive tracers. In this review, we only present and discuss osteomyelitis models. Three ethical aspects (3R) are essential when exposing experimental animals to infections. Thus, we should perform experiments in vitro rather than in vivo (Replacement), use as few animals as possible (Reduction), and impose as little pain on the animal as possible (Refinement). The gain for humans should by far exceed the disadvantages for the individual experimental animal. To this end, the translational value of animal experiments is crucial. We therefore need a robust and well-characterized animal model to evaluate new osteomyelitis tracers to be sure that unpredicted variation in the animal model does not lead to a misinterpretation of the tracer behavior. In this review, we focus on how the development of radioactive tracers relies heavily on the selection of a reliable animal model, and we base the discussions on our own experience with a porcine model.


2021 ◽  
Vol 22 (11) ◽  
pp. 5711
Author(s):  
Julian Zacharjasz ◽  
Anna M. Mleczko ◽  
Paweł Bąkowski ◽  
Tomasz Piontek ◽  
Kamilla Bąkowska-Żywicka

Knee osteoarthritis (OA) is a degenerative knee joint disease that results from the breakdown of joint cartilage and underlying bone, affecting about 3.3% of the world's population. As OA is a multifactorial disease, the underlying pathological process is closely associated with genetic changes in articular cartilage and bone. Many studies have focused on the role of small noncoding RNAs in OA and identified numbers of microRNAs that play important roles in regulating bone and cartilage homeostasis. The connection between other types of small noncoding RNAs, especially tRNA-derived fragments and knee osteoarthritis is still elusive. The observation that there is limited information about small RNAs different than miRNAs in knee OA was very surprising to us, especially given the fact that tRNA fragments are known to participate in a plethora of human diseases and a portion of them are even more abundant than miRNAs. Inspired by these findings, in this review we have summarized the possible involvement of microRNAs and tRNA-derived fragments in the pathology of knee osteoarthritis.


2021 ◽  
Vol 8 (4) ◽  
pp. 59
Author(s):  
Elisabete Nascimento-Gonçalves ◽  
Bruno A.L. Mendes ◽  
Rita Silva-Reis ◽  
Ana I. Faustino-Rocha ◽  
Adelina Gama ◽  
...  

Colorectal cancer is one of the most common gastrointestinal malignancies in humans, affecting approximately 1.8 million people worldwide. This disease has a major social impact and high treatment costs. Animal models allow us to understand and follow the colon cancer progression; thus, in vivo studies are essential to improve and discover new ways of prevention and treatment. Dietary natural products have been under investigation for better and natural prevention, envisioning to show their potential. This manuscript intends to provide the readers a review of rodent colorectal cancer models available in the literature, highlighting their advantages and disadvantages, as well as their potential in the evaluation of several drugs and natural compounds’ effects on colorectal cancer.


Sign in / Sign up

Export Citation Format

Share Document