Effect of Gradation and Morphological Characteristics of Aggregates on Mechanical Properties of Bituminous Concrete and Dense Bituminous Macadam

Author(s):  
Mohammad Iqbal Khairandish ◽  
Avani Chopra ◽  
Sandeep Singh ◽  
Jasgurpreet Singh Chohan ◽  
Raman Kumar
Author(s):  
Elchyn Aliiev ◽  
◽  
Christina Lupko ◽  

To create a database and systematize the seeds of samples of small-seeded crops, it is necessary to determine the patterns of influence of morphological parameters on their physical and mechanical properties. The development of the latest technologies and technical devices for cleaning and separation is possible due to the understanding of the characteristic morphological parameters for each of the small-seeded crops. The aim of the research is to determine the physical and mechanical properties of the seed material of small-seeded crops (mustard, flax, ryegrass, rapeseed), necessary to increase the efficiency of their cleaning and separation processes. To achieve this goal, a plan of experimental research was developed, which provided for the determination of physical and mechanical parameters of seeds of small-seeded crops, namely: indicators that characterize the flowability of seeds (angle of natural bias); frictional properties of seeds (static coefficient of friction); porosity (density) and density; size and mass characteristics of seeds (length, width, thickness, effective diameter, weight of 1000 seeds). It is established that the physical and mechanical properties of seeds of small-seeded crops are greatly influenced by its humidity. With increasing humidity, the performance of the test material increases. This is due to the fact that with increasing humidity, the shape of the seed almost turns into a spherical, which, in turn, leads to an increase in the curvature of the surface and reduce the points of contact between the seeds. As a result, the angle of natural inclination increases. The coefficient of friction of seeds of small-seeded crops depends on the roughness of the friction surface and decreases with increasing humidity. This is due to the fact that with increasing humidity decreases the forces of molecular attraction of the seed coat to the surface of the material. Seed density increases with increasing humidity. From this we can conclude that the absorption of moisture by the investigated material increases the total weight of the seed, and as a result - increases its specific weight.


2019 ◽  
Vol 26 (4) ◽  
pp. 639-647
Author(s):  
Michele Angelo Attolico ◽  
Caterina Casavola ◽  
Alberto Cazzato ◽  
Vincenzo Moramarco ◽  
Gilda Renna

Purpose The purpose of this paper is to verify the effects of extrusion temperature on orthotropic behaviour of the mechanical properties of parts obtained by fused filament fabrication (FFF) under quasi-static tensile loads. Design/methodology/approach Tensile tests were performed on single layer specimens fabricated in polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS) to evaluate the mechanical properties at different extrusion temperatures and raster orientations (0°, 45° and 90°). Furthermore, a detailed study of morphological characteristics of the single layer samples cross-section and of the bonding quality among adjacent deposited filaments was performed by scanning electron microscopy to correlate the morphology of materials with mechanical behaviour. Findings The results show that the orthotropic behaviour of FFF-printed parts tends to reduce, while the mechanical properties improved with increase in extrusion temperature. Furthermore, the increase in extrusion temperature led to an improvement in inter-raster bonding quality and in the compactness and homogeneity of the parts. Originality/value The relation between the extrusion temperature, orthotropic behaviour and morphological surface characteristics of the single layer specimen obtained by FFF has not been previously reported.


2017 ◽  
Vol 52 (3) ◽  
pp. 167-176 ◽  
Author(s):  
AK Mondal ◽  
PK Chattopadhyay

Four different bag leathers, such as, Sheep Bag Leather (SBL), Buffalo Vegetable Tanned Leather (BVTL), Cow Drum Dyed Dry Milled Leather (CDDDML), and Cow Crocodile Print Leather (CCPL), were processed by different methods from respective wet-blues of Indian origin. Thermal degradation pro?le and mechanical properties of the samples were evaluated, and crosslink densities of each sample were measured by ?tment of Mooney-Rivlin equation on stress-strain plots. Morphological characteristics (e.g. ?bre structure, ?bre thickness, splitting etc.) of all the specimens were investigated by image analyses of SEM photomicrographs. The highest crosslinking density for BVTL was attributed to its higher ?bre and ?bril thicknesses coupled with rigorous retanning by vegetable tannins and syntans. Embossing at higher temperature and pressure reduced CCPL’s elongation-at-break value and hence stretchiness possibly due to the development of set properties within the CCPL matrix. SBL was noted to contain huge void spaces that increased its stretchiness, and melamine formaldehyde syntans showed pronounced in?uence in increasing the thermal resistance of both CCPL and CDDDML.Bangladesh J. Sci. Ind. Res. 52(3), 167-176, 2017


Soft Matter ◽  
2019 ◽  
Vol 15 (30) ◽  
pp. 6190-6199 ◽  
Author(s):  
Cécile Le Floch-Fouéré ◽  
Luca Lanotte ◽  
Romain Jeantet ◽  
Ludovic Pauchard

The impact of solute properties on the morphological characteristics of evaporating droplets is investigated through the analysis of drying stages and final crack pattern of biological samples (WPI, whey protein) and model silica dispersions (TM50).


2012 ◽  
Vol 629 ◽  
pp. 25-31
Author(s):  
Bing Zhou ◽  
Xiao Hong Jiang ◽  
A.V. Rogachev ◽  
Rui Qi Shen

Diamond-like carbon (DLC) bilayer films with Cu interlayer were prepared on silicon substrate by direct-current and pulsed cathode arc plasma technique, and annealed at various temperatures in vacuum. Structure, morphology and mechanical properties of the bilayer films were investigated by Raman spectroscopy, Auger electron spectroscopy, scanning electron microscopy and atomic force microscopy, surface profilometer and Vickers sclerometer. The results show that Cu interlayer changes the bilayer microstructure, including the thickness and element distribution of diffusion layer, the relative fraction of sp3/sp2bonding and growth model of bilayer. A simple three-layer model was used to describe the interdiffusion between Cu and C layer. Cu interlayer could be more effective against graphitization upon annealing. Morphological characteristics of the films were studied by analyzing the surface features of substrate. Cu/DLC bilayer exhibits highly dispersed nano-agglomerates with smaller size on the surface due to low surface energy of Cu interlayer. The stress and hardness of the films were affected accordingly. Cu/DLC bilayer shows a relatively high hardness at low annealing temperature but the stress almost no change. By changing Cu interlayer and annealing temperature, excellent DLC films could be designed for the protective, hard, lubricating and wear resistant coatings on mechanical, electronic and optical applications.


2013 ◽  
Vol 702 ◽  
pp. 27-30
Author(s):  
Ling Qiang Yang ◽  
Lu Ling Yang ◽  
Rui Gao

The research presented the mechanical properties under compressive loads of a natural stone masonry. The characterization of the basic materials and different stone masonry prisms are included. Sandstone and low strength lime–cement mortar were used for this experimental work. The morphological characteristics of walls were also taken into account, in order to manufacture prism specimens that were as representative as possible of the Chinese typology. The experimental values were compared with the analytical in different masonry.


2021 ◽  
Author(s):  
Nozieana Khairuddin ◽  
Md. Bazlul Mobin Siddique ◽  
Mohammad Sobri Merais ◽  
Nurul Husna Che Hamzah ◽  
Dayangku Nurshahirah Awang Wahab

In recent years, the potential of agricultural wastes has received increasing attention from academia and industry. The aim has been to identify strategies for the conversion of low-value wastes into new materials and other value-added products. Cellulose is a naturally abundant polymer that is readily available in various agricultural wastes. It is a linear polymer consisting of β-D-glucopyranose units (disaccharides) joined by glycosidic β-1,4 bonds. Nanoparticles can be extracted from cellulose fibers using a top-down mechanically or chemically treatment. Cellulose nanomaterials have generated significant interest due to their intrinsic properties such as large surface-to-volume ratios, high tensile strength, stiffness, and flexibility in addition to good dynamic mechanical, electrical, and thermal properties. The use of nanocellulose for reinforcement in matrices improves thermo-mechanical properties, decreases the sensitivity of polymers to water, and preserves biodegradability. The mixing of nanocellulose with polysaccharides improves mechanical properties. Nano-sized cellulose fibers possess unique physical, chemical, and morphological characteristics. Hence, nano-sized cellulose fibers are considered versatile materials for addition to polymers, and application in high gas barriers and packaging materials. Other uses include electronic devices, foods, medicine, cosmetics, and health care. This chapter focuses on the cellulose nanofibers attained from banana, pineapple and corn-based agricultural wastes.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Bin Zhou ◽  
Huiling Wang ◽  
Hongtao Zhou ◽  
Ke Wang ◽  
Shudong Wang ◽  
...  

Abstract Cocoon is a kind of natural biopolymer material with reasonable structure and various functions. However, its structure and functions are often destroyed in practical application. In this study, we took common Bombyx Mori as the research object, and provided different cocooning sites for single or multiple silkworms to construct common stereoscopic cocoons (“normal cocoons” [NC]) and flat cocoons (“single-silkworm flat cocoons” [SFC] and “multi-silkworm flat cocoons” [MFC]), respectively, and compared the morphological structure and basic properties of these cocoons. The study found that the flat cocoons have similar multi-layered variable structure and characteristics compared to those of the common cocoons; also, morphological characteristics and physical and chemical properties of silk fiber from outer layer to inner layer, such as sericin content, fiber fineness, and change rule of basic mechanical properties, are completely consistent with those of the common cocoons. It can be considered that the flat cocoons are constructed by silkworms in the same “procedural” process as that of common cocoons. Due to the expansion of cocooning space, the mechanical properties of fibers are significantly improved. By controlling the size of the cocooning space or the quantity of silkworms cocooning simultaneously, and the time of spinning, a cocoon material with controllable thickness, weight per square meter, porosity, and number of cocoon layers can be obtained as a composite material for direct application.


2015 ◽  
Vol 766-767 ◽  
pp. 333-336 ◽  
Author(s):  
M. Sangeetha ◽  
S. Prakash

Aluminium alloy(A 356) has improved properties such as tension and elongation butit is decreased in hardness property compared to ceramics and therefore silicon carbideparticle (SiCp) is added with aluminium alloy to increase its hardness. Silicon Carbideparticle is abrasive and hence having poor interfacial bonding between ceramics andaluminium, so that the surface of the ceramics is coated with Multi Wall Carbon Nano Tubes(MWCNT). In this paper 10% of SiCp is taken for the experiment and coated with 1.5%, 2%,2.5% of MWCNT and this coated SiCp mixed with molten A 356 using stir casting method.The prepared castings were mechanically tested using Universal Testing Machine (UTM),Vickers hardness Testing Machine, Impact Testing Machine and Optical Microscope andtheir mechanical properties and morphological characteristics were studied


Sign in / Sign up

Export Citation Format

Share Document