A Low-Cost High-Quality Mobile X-ray Film Digitiser with Storage Facilities

2018 ◽  
Vol 1 (1) ◽  
pp. 1-3
Author(s):  
Adziri H. Sackey
2010 ◽  
Vol 18 (5) ◽  
pp. 28-31
Author(s):  
R.B. Simmons

In recent years there has been a virtual explosion in the world of art glass. New glass formulations have brought a host of new colors into the marketplace, and the availability of low-cost, high-quality torches and other tools has brought art glass to the hobbyist. In addition to burn risks and possible cutting injury, there are a number of less obvious hazards that should be known to novice glass workers. One of these is the presence of heavy metals in or on glass surfaces and possibly in the atmosphere immediately surrounding the work area, presenting both potential skin contact and inhalation hazards. This study examines the metallic surfaces generated on five glass colors commonly used in art glass jewelry.


1996 ◽  
Vol 4 (4) ◽  
pp. 18-19
Author(s):  
Larry W. Sarver ◽  
Terry R. McCue

A series of upgrades of an Electron Microprobe X-ray Analyzer (EPMA) were made to expand capabilities, increase efficiency, and cut costs. High technology EPUA features were acquired with cost effective expenditures. The driving force for our upgrade was to meet the continuing needs of corporate customers as well as many small companies which come to us for low-cost/high quality EPMA services.


2013 ◽  
Vol 12 (05) ◽  
pp. 1350040
Author(s):  
MINGFU YE ◽  
TINGEING YI ◽  
LIXIN XU ◽  
GUOCHANG CHEN ◽  
YUNCHAO LI ◽  
...  

Orthorhombic phase of antimony triselenide ( Sb 2 Se 3) nanowires have been obtained by a facile and effective one-pot noninjection chemical route with controllable shape and size. The synthesis, which uses SeO 2 as the selenium precursor and can be conducted in air, is suitable for the larger-scale industrial synthesis of high-quality nanocrystals at low cost. The as-prepared nanocrystals were extensively characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), high resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS). We believe that the method present here is a more straightforward and cost-effective route to prepare Sb 2 Se 3 nanocrystals with high quality. The band-edge positions of the Sb 2 Se 3 nanocrystals are studied by cyclic voltammetry (CV).


2020 ◽  
Vol 64 (2) ◽  
pp. 20503-1-20503-5
Author(s):  
Faiz Wali ◽  
Shenghao Wang ◽  
Ji Li ◽  
Jianheng Huang ◽  
Yaohu Lei ◽  
...  

Abstract Grating-based x-ray phase-contrast imaging has the potential to enhance image quality and provide inner structure details non-destructively. In this work, using grating-based x-ray phase-contrast imaging system and employing integrating-bucket method, the quantitative expressions of signal-to-noise ratios due to photon statistics and mechanical error are analyzed in detail. Photon statistical noise and mechanical error are the main sources affecting the image noise in x-ray grating interferometry. Integrating-bucket method is a new phase extraction method translated to x-ray grating interferometry; hence, its image quality analysis would be of great importance to get high-quality phase image. The authors’ conclusions provide an alternate method to get high-quality refraction signal using grating interferometer, and hence increases applicability of grating interferometry in preclinical and clinical usage.


Author(s):  
Koji INAKA ◽  
Saori ICHIMIZU ◽  
Izumi YOSHIZAKI ◽  
Kiyohito KIHIRA ◽  
Elena G. LAVRENKO ◽  
...  

A series of space experiments aboard the International Space Station (ISS) associated with high-quality Protein Crystal Growth (PCG) in microgravity conditions can be considered as a unique and one of the best examples of fruitful collaboration between Japanese and Russian scientists and engineers in space, which includes also other ISS International Partners. X-ray diffraction is still the most powerful tool to determine the protein three dimensional structure necessary for Structure based drug design (SBDD). The major purpose of the experiment is to grow high quality protein crystals in microgravity for X-ray diffraction on Earth. Within one and a half decade, Japan and Russia have established an efficient process over PCG in space to support latest developments over drug design and structural biology. One of the keys for success of the experiment lies in how precisely pre-launch preparations are made. Japanese party provides flight equipment for crystallization and ensures the required environment to support the experiment aboard of the ISS’s Kibo module, and also mainly takes part of the experiment ground support such as protein sample characterization, purification, crystallization screening, and solution optimization for microgravity experiment. Russian party is responsible for integration of the flight items equipped with proteins and precipitants on board Russian transportation space vehicles (Soyuz or Progress), for delivery them at the ISS, transfer to Kibo module, and returning the experiments’ results back on Earth aboard Soyuz manned capsule. Due to close cooperation of the parties and solid organizational structure, samples can be launched at the ISS every half a year if the ground preparation goes smoothly. The samples are crystallized using counter diffusion method at 20 degree C for 1–2.5 months. After samples return, the crystals are carefully taken out from the capillary, and frozen for X-ray diffraction at SPring8 facility in Japan. Extensive support of researchers from both countries is also a part of this process. The paper analyses details of the PCG experiment scheme, unique and reliable technology of its execution, and contains examples of the application. Key words: International Space Station, Protein crystals, Microgravity, International collaboration.


Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 91
Author(s):  
Santiago Lopez-Restrepo ◽  
Andres Yarce ◽  
Nicolás Pinel ◽  
O.L. Quintero ◽  
Arjo Segers ◽  
...  

The use of low air quality networks has been increasing in recent years to study urban pollution dynamics. Here we show the evaluation of the operational Aburrá Valley’s low-cost network against the official monitoring network. The results show that the PM2.5 low-cost measurements are very close to those observed by the official network. Additionally, the low-cost allows a higher spatial representation of the concentrations across the valley. We integrate low-cost observations with the chemical transport model Long Term Ozone Simulation-European Operational Smog (LOTOS-EUROS) using data assimilation. Two different configurations of the low-cost network were assimilated: using the whole low-cost network (255 sensors), and a high-quality selection using just the sensors with a correlation factor greater than 0.8 with respect to the official network (115 sensors). The official stations were also assimilated to compare the more dense low-cost network’s impact on the model performance. Both simulations assimilating the low-cost model outperform the model without assimilation and assimilating the official network. The capability to issue warnings for pollution events is also improved by assimilating the low-cost network with respect to the other simulations. Finally, the simulation using the high-quality configuration has lower error values than using the complete low-cost network, showing that it is essential to consider the quality and location and not just the total number of sensors. Our results suggest that with the current advance in low-cost sensors, it is possible to improve model performance with low-cost network data assimilation.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4554
Author(s):  
Ralph-Alexandru Erdelyi ◽  
Virgil-Florin Duma ◽  
Cosmin Sinescu ◽  
George Mihai Dobre ◽  
Adrian Bradu ◽  
...  

The most common imaging technique for dental diagnoses and treatment monitoring is X-ray imaging, which evolved from the first intraoral radiographs to high-quality three-dimensional (3D) Cone Beam Computed Tomography (CBCT). Other imaging techniques have shown potential, such as Optical Coherence Tomography (OCT). We have recently reported on the boundaries of these two types of techniques, regarding. the dental fields where each one is more appropriate or where they should be both used. The aim of the present study is to explore the unique capabilities of the OCT technique to optimize X-ray units imaging (i.e., in terms of image resolution, radiation dose, or contrast). Two types of commercially available and widely used X-ray units are considered. To adjust their parameters, a protocol is developed to employ OCT images of dental conditions that are documented on high (i.e., less than 10 μm) resolution OCT images (both B-scans/cross sections and 3D reconstructions) but are hardly identified on the 200 to 75 μm resolution panoramic or CBCT radiographs. The optimized calibration of the X-ray unit includes choosing appropriate values for the anode voltage and current intensity of the X-ray tube, as well as the patient’s positioning, in order to reach the highest possible X-rays resolution at a radiation dose that is safe for the patient. The optimization protocol is developed in vitro on OCT images of extracted teeth and is further applied in vivo for each type of dental investigation. Optimized radiographic results are compared with un-optimized previously performed radiographs. Also, we show that OCT can permit a rigorous comparison between two (types of) X-ray units. In conclusion, high-quality dental images are possible using low radiation doses if an optimized protocol, developed using OCT, is applied for each type of dental investigation. Also, there are situations when the X-ray technology has drawbacks for dental diagnosis or treatment assessment. In such situations, OCT proves capable to provide qualitative images.


Sign in / Sign up

Export Citation Format

Share Document