Faba Bean Organs Differed in Their Effects on Maize Seed Germination Rate and Soil Microbial Activities as well as Their Decomposition Patterns in a Regosol Soil

2019 ◽  
Vol 20 (2) ◽  
pp. 367-379 ◽  
Author(s):  
Zhibin He ◽  
Luhua Yao ◽  
Xuefeng Zhang ◽  
Yang Li ◽  
Dengke Wang ◽  
...  
Author(s):  
Jehan Khalil ◽  
Hasan Habib ◽  
Michael Alabboud ◽  
Safwan Mohammed

AbstractOlive mill wastewater is one of the environmental problems in semiarid regions. The main goals of this study were to investigate the impacts of different olive mill wastewater levels on durum wheat (Triticum aestivum var. Douma1) production and soil microbial activities (i.e., bacteria and fungi). A pot experiment was conducted during the growing seasons 2015/2017 to evaluate the effect of three levels of olive mill wastewater on both growth and productivity attributes of wheat. Vertisol soil samples were collected from southern Syria. Two months before wheat cultivation, three levels of olive mill wastewater: T5 (5 L/m 2), T10 (10 L/m2) and T15 (15 L/m 2) were added to pots filled with the collected soil samples. Also, a control (T0) free of olive mill wastewater was considered as a reference. Results showed a significant increase (p < 0.05) in germination rate (%), plant height (cm), ear length (cm), kernels number, kernels weight per ear (g) and grain yield (g/m2) compared to control. However, T5 treatment did not induce a significant increase in terms of ear length, kernels weight per ear or yield (in the second season). On the other hand, T10 treatment had recorded the best results compared with the other two treatments (T5, T15). Similarly, the results showed a significant increase in the number of bacterial and fungi cells by increasing olive mill wastewater concentration. This research provides promising results toward using olive mill wastewater in an eco-friendly way under Syrian conditions.


2021 ◽  
Author(s):  
Shahab IbrahimPour ◽  
Alireza KhavaninZadeh ◽  
Ruhollah Taghizadeh mehrjardi ◽  
Hans De Boeck ◽  
Alvina Gul

Abstract Destructive mining operations are affecting large areas of natural ecosystems, especially in arid lands. The present study aims at investigating the impact of iron mine exploitation on vegetation and soil in Nodoushan (Yazd province, central Iran). Based on the dominant wind, topography, slope, vegetation and soil of the area, soil and vegetation parameters close to ​the mine were recorded and analyzed according to the distance from the mine. In order to obtain the vegetation cover, a transect and plot on the windward and leeward side of the mine, with 100 m intervals and three replicates at each sampling location was used, yielding 96 soil samples. The amount of dust on the vegetation, the seed weight and seed germination rate of Artemisia sp. as the dominant species within the area, and the soil microbial respiration were measured. The relationship between vegetation cover and distance from the mine was not linear, which was due to an interplay between pollution from the mine and local grazing, while other factors did increase or decrease linearly. The results showed that, as the distance from the mine increased, the weight of 1000 seeds of Artemisia sp. was significantly increased from 271 to 494 mg and seed germination rate and soil microbial respiration were significantly increased from 11.7 to 48.4 % and from 4.5 to 5.9 mg CO2 g− 1 soil day− 1 respectively, while the amount of dust significantly decreased from 43.5 to 6 mg (g plant)−1 between the distance of 100 to 600 m from the mine in the leeward direction. A similar trend was observed in the windward side, though negative effects were lower compared to the same distance along the leeward sample locations. The direct and indirect effects on plant growth and health from mining impacts generally decreased linearly with increasing distance from the mine, up to at least 600 m. Our study serves as a showcase for the potential of bio-indicators as a cost-effective method for assessing impacts of mining activities on the surrounding environment.


2016 ◽  
Vol 53 ◽  
pp. 117-126 ◽  
Author(s):  
Wenmei He ◽  
Mohanmmad Moonis ◽  
Haegeun Chung ◽  
Gayoung Yoo

Agriculture ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1160
Author(s):  
Senlin Xiao ◽  
Tianjun Xu ◽  
Yuandong Wang ◽  
Jinfeng Xing ◽  
Ronghuan Wang ◽  
...  

The impacts of low temperature occasionally encountered at higher latitude regions on maize seed germination present significant threats to yield and cultivation. Exploring the association of antioxidant system with low temperature (LT) germination could support the breeding strategies for better responding to LT disturbance. In this study, we have examined the germination rate and growth potential of a set of elite maize inbred accessions under LT and normal temperature (NT) conditions in the field. These accessions were found to have variable germination rate and growth potential when grown at LT, whereas the difference is not significant under NT. Physiological study revealed lower hydrogen peroxide content in LT tolerant accessions when compared with sensitive ones. LT-tolerant and LT-sensitive lines maintained similar content of ascorbate (AsA) and glutathione (GSH), whereas the reduced substrate content of which were significantly higher in LT-tolerant accessions. Consistently, activities of ascorbate peroxidase and dehydroascorbate reductase, the enzyme components that responsible for the AsA-GSH recycling, were much higher in LT-tolerant lines. Transcription profile revealed the increased expression of ZmVTC2 gene in LT-tolerant inbred line, which was rate limited step in AsA biosynthesis. These data indicates that the coordinated improvement of AsA biosynthesis and AsA-GSH recycling increase the pool size of the total antioxidants, which ameliorate LT-induced oxidative stress during maize seed germination.


Agrologia ◽  
2018 ◽  
Vol 4 (2) ◽  
Author(s):  
Stela Wusono ◽  
John M Matinahoru ◽  
CMA Watimena

Swietenia mahagoni is a timber forestry plants have allelopathy toxic, can interfere with the growth of surrounding plants. This study aimed to determine the effects of extracts from various parts of Swietenia mahagoni on seed germination of green beans and corn. This research was conducted at the Laboratory of Silviculture, an extract from a litter, fresh leaves, bark and roots of the Swietenia mahagoni plant and given to the seed germination green beans and corn. The results showed that the extract of fresh leaves and roots Swietenia mahagoni inhibit seed germination green beans and corn, while the provision of litter no effect. Green bean seed has a higher durability of the maize seed to allelopathy of root Swietenia mahagoni.


Helia ◽  
2000 ◽  
Vol 23 (33) ◽  
pp. 97-104
Author(s):  
F.M. Khalifa ◽  
A.A. Schneiter ◽  
E.I. El Tayeb

SUMMARY Seed germination of six sunflower (Helianthus annuus L.) hybrids was investigated across a range of eleven constant temperatures between 5°C and 45°C. Large temperature differences in germination rate 1/t (d-1), cardinal temperature (°C) and thermal time θ (°cd) were observed among hybrids. Base temperatures (Tb) varied between 3.3°C and 6.7°C whereas maximum germination temperatures (Tm) varied between 41.7°C and 48.9°C. Final germination fraction was attained at 15°C - 25°C whereas the maximum rate of germination was attained at 30.4°C - 35.6°C. The maximum germination rate of hybrid USDA 894, the cultivar with the slowest germination rate, was only 50% of that of hybrid EX 47. The low Tb and high Tm of sunflower appear to be one of the factors which explain the successful adaptation of sunflower to a wide range of temperature. These findings are discussed in relation to the origin of the crop and its wide adaptations in diverse habitats and climatic zones.


Horticulturae ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 182
Author(s):  
Junsik Ahn ◽  
Soyeon Oh ◽  
Yang Joo Kang ◽  
KiBum Kim ◽  
Sung-Kwon Moon ◽  
...  

Peanut (Arachis hypogaea L.) seeds were germinated to investigate the effect of the fermentation period of oak tree sawdust on germination viability and seedling characteristics. Its germination rate, seedling weight, length, and total vigor index were assessed. The seeds were sown in oak tree sawdust fermented for 0, 30, 45, and 60 days. The germination rates of the seeds in fermented sawdust were significantly different. The seeds in the 45-day fermented sawdust produced the heaviest biomass weight (4.6 g) with the longest true leaf (1.7 cm) and hypocotyl (3.4 cm) resulting in the highest total vigor index (925.8). In contrast, seeds in 0-day fermented sawdust had the lowest total vigor index (18.3). Microbiome analysis showed that the microbial community in the sawdust changed as the fermentation progressed, indicating that the microbial community seems to affect seed germination physiology. Taken together, 45-day fermented sawdust is recommended for optimal peanut seed germination and seedling growth.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yunchen Zhao ◽  
Wenjiang Fu ◽  
Changwei Hu ◽  
Guangquan Chen ◽  
Zhanwen Xiao ◽  
...  

AbstractSoil microbe is crucial to a healthy soil, therefore its diversities and abundances under different conditions are still need fully understand.The aims of the study were to characterize the community structure and diversity of microbe in the rhizosphere soil after continuous maize seed production, and the relationship between the disease incidence of four diseases and the variation of the rhizosphere microbe. The results showed that different fungal and bacterial species were predominant in different cropping year, and long-term maize seed production had a huge impact on structure and diversity of soil microbial. Ascomycota and Mortierellomycota were the dominant fungal phyla and Mortierella and Ascomycetes represented for a large proportion of genus. A relative increase of Fusarium and Gibberella and a relative decrease of Mortierella, Chrysosporium, Podospora, and Chaetomium were observed with the increase of cropping year. Pathogenic Fusarium, Curvularia, Curvularia-lunata, Cladosporium, Gibberella-baccata, and Plectosphaerellaceae were over-presented and varied at different continuous cropping year, led to different maize disease incidence. Proteobacteria and Actinobacteria ranked in the top two of all bacterial phyla, and genus Pseudarthrobacter, Roseiflexus and RB41 dominated top 3. Haliangium and Streptomyces decreased with the continuous cropping year and mono-cropping of maize seed production increased disease incidence with the increase of cropping year, while the major disease was different. Continuous cropping of maize seed production induced the decrease of protective microbe and biocontrol genera, while pathogenic pathogen increased, and maize are in danger of pathogen invasion. Field management show great effects on soil microbial community.


Sign in / Sign up

Export Citation Format

Share Document