Aberrant Methylation of the SOX21-AS1 Promoter Region Promotes Gene Expression and Its Clinical Value in Cervical Cancer

Author(s):  
Peipei Du ◽  
Yanfang Zhi ◽  
Ruijie Wang ◽  
Ya Li ◽  
Huanhuan Li ◽  
...  
2021 ◽  
Author(s):  
Wenfan Zhang ◽  
Huiling Cao ◽  
Jing Zhao ◽  
Jinhao Yang ◽  
Zheng Liang ◽  
...  

Abstract Background Aberrant methylation of EphA7 has been reported in the process of carcinogenesis,but not including cervical cancer.Therefore,an integration study was performed to explore the association between EphA7 hypermethylation and cervical cancer and validate the potential value of EphA7 hypermethylation in the diagnosis of cervical cancer. Results Here, we performed an integration study to identify and validate the association between EphA7 methylation and cervical cancer. First, data on EphA7 methylation and expression in cervical cancer were extracted and analyzed via bioinformatics tools. The results showed that EphA7 promoter methylation levels were significantly increased in cervical cancer compared to normal tissues (P<0.001) and negatively correlated with EphA7 expression. Subsequently, these prediction results were confirmed in cell lines; moreover, CRISPR-based methylation perturbation tools (dCas9-Tet1/DNMT3a) were constructed to further demonstrate that DNA methylation participates in the regulation of EphA7 expression directly. Ultimately, the clinical value of EphA7 methylation in cervical cancer was validated in cervical tissues and Thinprep cytologic test (TCT) samples by methylation-specific PCR (MSP) and quantitative methylation-specific PCR (QMSP), respectively. Consistently, the methylation level and the positive rate of EphA7 gradually increased with severity from normal to cancer stages in TCT samples (P<0.01). Conclusion Above all, EphA7 presents hypermethylation in the cervical cancer,which is a potential biomarker in the diagnosis of cervical cancer.


Author(s):  
Li Zhang ◽  
Sijuan Tian ◽  
Minyi Zhao ◽  
Ting Yang ◽  
Shimin Quan ◽  
...  

Background: Smad3 is a pivotal intracellular mediator for participating in the activation of multiple immune signal pathway. Objective: The epigenetic regulation mechanism of the positive immune factor Smad3 in cervical cancer remains unknown. Therefore, the epigenetic regulation on Smad3 is investigated in this study. Methods: The methylation status of SMAD3 was detected by Methylation-specific PCR (MS-PCR) and Quantitative Methylation-specific PCR (MS-qPCR) in cervical cancer tissues and cell lines. The underlying molecular mechanisms of SUV39H1-DNMT1-Smad3 regulation was elucidated using cervical cancer cell lines containing siRNA or/and overexpression system. Confirmation of the regulation of DNMT1 by SUV39H1 used Chromatin immunoprecipitation-qPCR (ChIP-qPCR). The statistical methods used for comparing samples between groups were paired t tests and one-way ANOVAs. Results: H3K9me3 protein which regulated by SUV39H1 directly interacts with the DNMT1 promoter region to regulate its expression in cervical cancer cells, resulting in the reduce expression of the downstream target gene DNMT1. In addition, DNMT1 mediates the epigenetic modulation of the SMAD3 gene by directly binding to its promoter region. The depletion of DNMT1 effectively restores the expression of Smad3 in vitro. Moreover, in an in vivo assay, the expression profile of SUV39H1-DNMT1 was found to correlate with Smad3 expression in accordance with the expression at the cellular level. Notably, the promoter region of SMAD3 was hypermethylated in cervical cancer tissues, and this hypermethylation inhibits the subsequent gene expression. Conclusion: These results indicate that SUV39H1-DNMT1 is a crucial Smad3 regulatory axis in cervical cancer. SUV39H1-DNMT1 axis may provide a potential therapeutic target for the treatment of cervical cancer.


2021 ◽  
pp. 1-6
Author(s):  
Ben Kang ◽  
Hyun Seok Lee ◽  
Seong Woo Jeon ◽  
Soo Yeun Park ◽  
Gyu Seog Choi ◽  
...  

BACKGROUND: Colorectal cancer (CRC) is one of the leading causes of mortality and morbidity in the world. It is characterized by different pathways of carcinogenesis and is a heterogeneous disease with diverse molecular landscapes that reflect histopathological and clinical information. Changes in the DNA methylation status of colon epithelial cells have been identified as critical components in CRC development and appear to be emerging biomarkers for the early detection and prognosis of CRC. OBJECTIVE: To explore the underlying disease mechanisms and identify more effective biomarkers of CRC. METHODS: We compared the levels and frequencies of DNA methylation in 11 genes (Alu, APC, DAPK, MGMT, MLH1, MINT1, MINT2, MINT3, p16, RGS6, and TFPI2) in colorectal cancer and its precursor adenomatous polyp with normal tissue of healthy subjects using pyrosequencing and then evaluated the clinical value of these genes. RESULTS: Aberrant methylation of Alu, MGMT, MINT2, and TFPI2 genes was progressively accumulated during the normal-adenoma-carcinoma progression. Additionally, CGI methylation occurred either as an adenoma-associated event for APC, MLH1, MINT1, MINT31, p16, and RGS6 or a tumor-associated event for DAPK. Moreover, relatively high levels and frequencies of DAPK, MGMT, and TFPI2 methylation were detected in the peritumoral nonmalignant mucosa of cancer patients in a field-cancerization manner, as compared to normal mucosa from healthy subjects. CONCLUSION: This study identified several biomarkers associated with the initiation and progression of CRC. As novel findings, they may have important clinical implications for CRC diagnostic and prognostic applications. Further large-scale studies are needed to confirm these findings.


2012 ◽  
Vol 2 (12) ◽  
pp. 1643-1649 ◽  
Author(s):  
Martha H. Elmore ◽  
John G. Gibbons ◽  
Antonis Rokas

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Baojie Wu ◽  
Shuyi Xi

Abstract Background This study aimed to explore and identify key genes and signaling pathways that contribute to the progression of cervical cancer to improve prognosis. Methods Three gene expression profiles (GSE63514, GSE64217 and GSE138080) were screened and downloaded from the Gene Expression Omnibus database (GEO). Differentially expressed genes (DEGs) were screened using the GEO2R and Venn diagram tools. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed. Gene set enrichment analysis (GSEA) was performed to analyze the three gene expression profiles. Moreover, a protein–protein interaction (PPI) network of the DEGs was constructed, and functional enrichment analysis was performed. On this basis, hub genes from critical PPI subnetworks were explored with Cytoscape software. The expression of these genes in tumors was verified, and survival analysis of potential prognostic genes from critical subnetworks was conducted. Functional annotation, multiple gene comparison and dimensionality reduction in candidate genes indicated the clinical significance of potential targets. Results A total of 476 DEGs were screened: 253 upregulated genes and 223 downregulated genes. DEGs were enriched in 22 biological processes, 16 cellular components and 9 molecular functions in precancerous lesions and cervical cancer. DEGs were mainly enriched in 10 KEGG pathways. Through intersection analysis and data mining, 3 key KEGG pathways and related core genes were revealed by GSEA. Moreover, a PPI network of 476 DEGs was constructed, hub genes from 12 critical subnetworks were explored, and a total of 14 potential molecular targets were obtained. Conclusions These findings promote the understanding of the molecular mechanism of and clinically related molecular targets for cervical cancer.


2021 ◽  
pp. 1-13
Author(s):  
Simei Tu ◽  
Hao Zhang ◽  
Xiaocheng Yang ◽  
Wen Wen ◽  
Kangjing Song ◽  
...  

BACKGROUND: Since the molecular mechanisms of cervical cancer (CC) have not been completely discovered, it is of great significance to identify the hub genes and pathways of this disease to reveal the molecular mechanisms of cervical cancer. OBJECTIVE: The study aimed to identify the biological functions and prognostic value of hub genes in cervical cancer. METHODS: The gene expression data of CC patients were downloaded from the Gene Expression Omnibus (GEO) database and The Cancer Genome Atlas (TCGA) database. The core genes were screened out by differential gene expression analysis and weighted gene co-expression network analysis (WGCNA). R software, the STRING online tool and Cytoscape software were used to screen out the hub genes. The GEPIA public database was used to further verify the expression levels of the hub genes in normal tissues and tumour tissues and determine the disease-free survival (DFS) rates of the hub genes. The protein expression of the survival-related hub genes was identified with the Human Protein Atlas (HPA) database. RESULTS: A total of 64 core genes were screened, and 10 genes, including RFC5, POLE3, RAD51, RMI1, PALB2, HDAC1, MCM4, ESR1, FOS and E2F1, were identified as hub genes. Compared with that in normal tissues, RFC5, POLE3, RAD51,RMI1, PALB2, MCM4 and E2F1 were all significantly upregulated in cervical cancer, ESR1 was significantly downregulated in cervical cancer, and high RFC5 expression in CC patients was significantly related to OS. In the DFS analysis, no significant difference was observed in the expression level of RFC5 in cervical cancer patients. Finally, RFC5 protein levels verified by the HPA database were consistently upregulated with mRNA levels in CC samples. CONCLUSIONS: RFC5 may play important roles in the occurrence and prognosis of CC. It could be further explored and validated as a potential predictor and therapeutic target for CC.


Genomics ◽  
2019 ◽  
Vol 111 (6) ◽  
pp. 1853-1861 ◽  
Author(s):  
Ayslan C. Brant ◽  
Albert N. Menezes ◽  
Shayany P. Felix ◽  
Liz M. de Almeida ◽  
Michael Sammeth ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document