Age-related changes in hemopoietic microenvironment. Enhanced growth of hemopoietic stroma and weakened genetic resistance to hemopoietic cells in old mice

1981 ◽  
Vol 16 (2) ◽  
pp. 195-198 ◽  
Author(s):  
J.L. Chertkov ◽  
Olga A. Gurevitch
Blood ◽  
2011 ◽  
Vol 117 (11) ◽  
pp. 3104-3112 ◽  
Author(s):  
Zohar Keren ◽  
Shulamit Naor ◽  
Shahar Nussbaum ◽  
Karin Golan ◽  
Tomer Itkin ◽  
...  

Abstract Aging is associated with a decline in B-lymphopoiesis in the bone marrow and accumulation of long-lived B cells in the periphery. These changes decrease the body's ability to mount protective antibody responses. We show here that age-related changes in the B lineage are mediated by the accumulating long-lived B cells. Thus, depletion of B cells in old mice was followed by expansion of multipotent primitive progenitors and common lymphoid progenitors, a revival of B-lymphopoiesis in the bone marrow, and generation of a rejuvenated peripheral compartment that enhanced the animal's immune responsiveness to antigenic stimulation. Collectively, our results suggest that immunosenescence in the B-lineage is not irreversible and that depletion of the long-lived B cells in old mice rejuvenates the B-lineage and enhances immune competence.


2020 ◽  
Author(s):  
Emily L. Goldberg ◽  
Irina Shchukina ◽  
Yun-Hee Youm ◽  
Christina D. Camell ◽  
Tamara Dlugos ◽  
...  

AbstractAging impairs the integrated immunometabolic responses which have evolved to maintain core body temperature in homeotherms to survive cold-stress, infections, and dietary restriction. Adipose tissue inflammation regulates the thermogenic stress response but how adipose tissue-resident cells instigate thermogenic failure in aged are unknown. Here, we define alterations in the adipose-resident immune system and identify that type 2 innate lymphoid cells (ILC2) are lost in aging. Restoration of ILC2 numbers in aged mice to levels seen in adults through IL-33 supplementation failed to rescue old mice from metabolic impairment and cold-induced lethality. Transcriptomic analyses revealed intrinsic defects in aged ILC2, and adoptive transfer of adult ILC2 are sufficient to protect old mice against cold. Thus, the functional defects in adipose ILC2 during aging drive thermogenic failure.One Sentence SummaryAge-related changes in adipose tissue drive reprogramming of ILC2 that leads to impaired cold tolerance


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4228-4228
Author(s):  
Silvia Albánez ◽  
Alison Michels ◽  
Kate Sponagle ◽  
David Lillicrap

Abstract Background: Aging is associated with a state of hypercoagulability, as the result of increased concentrations of plasma coagulation proteins. Plasma levels of Factor VIII (FVIII) and von Willebrand factor (VWF) increase with age in humans, but the potential contribution of increases in gene expression with age has not been studied. These two proteins circulate in a non-covalent complex and are cleared together from plasma, hence, a reduction in the expression of their clearance receptors is also a possible pathogenetic explanation. In contrast, plasma levels of ADAMTS13 have been shown to be reduced in later life in humans, but again the mechanism responsible for this age-related pathophysiology is currently unknown. In this study, we utilized a mouse model in which age-related changes in plasma levels of FVIII, VWF and ADAMTS13 were initially documented. Here, we evaluated age-related changes in the gene expression of VWF, FVIII, ADAMTS13 and the clearance receptors low-density lipoprotein receptor-related protein 1 (LRP1), scavenger receptor class A member 5 (SCARA5) and Stabilin-2 (Stab2). Methods: Liver, spleen and lung samples were collected from normal C57BL/6 mice at 9- (n=10), 55- (n=8) and 97-weeks of age (n=15). Also, liver and spleen samples were collected at 3-weeks of age (n=5). Total mRNA was isolated from the tissues and gene expression analysis performed through qRT-PCR by a two-step relative quantification against mouse GAPDH. Expression of murine Factor IX (f9) and Protein C (proc) genes were also measured as positive and negative controls, as the developmental expression of these genes has been extensively studied. The 9-weeks old mice were used as a reference, and expression levels in this group were set as 1. Results were expressed as the fold change median and 95% CI from the 9 week standard group. Data was log10 transformed and compared with a Mann-Whitney test. Additionally, plasma levels of murine VWF, FVIII and ADAMTS13 were measured through ELISA, chromogenic assays and ELISA-based activity assays, respectively, in samples obtained at the same time-points examined for gene expression. Results: Levels of VWF in plasma showed significant increases with age (p<0.0001), reaching a 2-fold increase by 97-weeks. Expression levels increased gradually with age in all three tissues evaluated, reaching a 1.4-fold increase in the lungs (p=0.008), 1.8-fold in the spleen (p=0.01) and 10.3-fold in the liver (p<0.0001) of 97-weeks old mice. When FVIII plasma levels were measured, a similar age-related increase was observed (p<0.0001). Expression levels increased significantly with age in the lungs by 2-fold (1.53-2.68, p=0.002), but no specific age-related changes were observed in liver and spleen. Plasma levels of mouse ADAMTS13 activity showed an opposite pattern to what has been reported for the human protein, with an age-related increase (p<0.0001). When ADAMTS13 gene expression was analyzed in the liver, higher levels were observed in the 3-week old group [1.32 (1.25-1.41), p=0.04], but no significant changes in expression occurred at later time points. Finally, gene expression analysis of LRP1, SCARA5 and Stab2 genes was performed in liver and spleen, the two main organs involved in VWF/FVIII clearance. Expression of these three receptor genes was significantly reduced in both tissues at 3-weeks (<0.04 fold for all estimates). Expression of LRP1 in the liver was an exception to this pattern, with a level that was similar to the 9-week old mice [1.44 (0.96-2.17), p=0.77]. Interestingly, no Stab2 expression was detected in the liver at any point. With aging, no significant changes occurred in SCARA5 and LRP1 gene expression that could be associated with higher plasma levels of VWF/FVIII. However, splenic Stab2 expression significantly decreased with age, reaching a 0.18-fold (0.13-0.25, p=0.02) reduction in the 97-weeks old spleen samples. The positive control gene used (f9) showed no increases in expression with age [1.11 (1.00-1.23), p=0.60], possibly due to strain differences with reported studies, while the negative control gene proc showed no changes [0.87 (0.82-0.93), p=0.28], as expected. Conclusions: Changes in gene expression with increasing age appear to be contributing to the increases in VWF and FVIII plasma levels. Our studies have shown age-related increases in expression of the VWF and FVIII genes and reduced expression of the clearance receptor Stabilin-2. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 15 ◽  
Author(s):  
Chiara Piantoni ◽  
Luca Carnevali ◽  
David Molla ◽  
Andrea Barbuti ◽  
Dario DiFrancesco ◽  
...  

ObjectiveThe aim of this study was to assess age-related changes in cardiac autonomic modulation and heart rate variability (HRV) and their association with spontaneous and pharmacologically induced vulnerability to cardiac arrhythmias, to verify the translational relevance of mouse models for further in-depth evaluation of the link between autonomic changes and increased arrhythmic risk with advancing age.MethodsHeart rate (HR) and time- and frequency-domain indexes of HRV were calculated from Electrocardiogram (ECG) recordings in two groups of conscious mice of different ages (4 and 19 months old) (i) during daily undisturbed conditions, (ii) following peripheral β-adrenergic (atenolol), muscarinic (methylscopolamine), and β-adrenergic + muscarinic blockades, and (iii) following β-adrenergic (isoprenaline) stimulation. Vulnerability to arrhythmias was evaluated during daily undisturbed conditions and following β-adrenergic stimulation.ResultsHRV analysis and HR responses to autonomic blockades revealed that 19-month-old mice had a lower vagal modulation of cardiac function compared with 4-month-old mice. This age-related autonomic effect was not reflected in changes in HR, since intrinsic HR was lower in 19-month-old compared with 4-month-old mice. Both time- and frequency-domain HRV indexes were reduced following muscarinic, but not β-adrenergic blockade in younger mice, and to a lesser extent in older mice, suggesting that HRV is largely modulated by vagal tone in mice. Finally, 19-month-old mice showed a larger vulnerability to both spontaneous and isoprenaline-induced arrhythmias.ConclusionThe present study combines HRV analysis and selective pharmacological autonomic blockades to document an age-related impairment in cardiac vagal modulation in mice which is consistent with the human condition. Given their short life span, mice could be further exploited as an aged model for studying the trajectory of vagal decline with advancing age using HRV measures, and the mechanisms underlying its association with proarrhythmic remodeling of the senescent heart.


2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S101-S101
Author(s):  
Ning Zhang ◽  
Susan Weintraub ◽  
Nicolas Musi

Abstract Skeletal muscle is one of the most abundant tissues in the body. In addition to its key roles in body support, movement and metabolic homeostasis, muscle also functions as an endocrine/secretory organ producing and releasing proteins into the circulation that modulate distant tissues (i.e. myokines). Considering that muscle mass and function changes with advancing age, here we tested the hypothesis that aging alters the muscle secretome profile. After euthanasia, soleus muscles from sedentary young and old mice were dissected, and incubated in oxygenated KRB buffer for 2 h. The buffer was subjected to in-gel trypsin-digestion and peptides analyzed by mass spectrometry. The concentration of 36 proteins were significantly (P&lt;0.05) elevated in the young vs. the old group. In contrast, only 7 proteins were significantly elevated in the old group. Some notable differences include those in HSPA1B and HSPA5 that were detected only in the young group. HSPA8 also was significantly elevated by 1.8-fold (P&lt;0.05) in the young versus the old group. Another prominent difference between groups involved translationally controlled tumor protein (TCTP), a critical regulator of apoptosis/carcinogenesis, that was elevated by 7-fold in the young vs. the old group (P&lt;0.05). These results indicate that aging alters the muscle secretion profile. Identified differences in the muscle secretome could reflect intrinsic changes in muscle cells with age. Because these myokines are released into the circulation, it is also possible that myokine secretion is a regulated cellular process by which muscle communicates and modulates the aging process in distant tissues.


1992 ◽  
Vol 263 (5) ◽  
pp. F951-F957 ◽  
Author(s):  
E. P. Peten ◽  
A. Garcia-Perez ◽  
Y. Terada ◽  
D. Woodrow ◽  
B. M. Martin ◽  
...  

Studies of age-related changes in glomerular extracellular matrix (ECM) synthesis in normal mice have been hampered by the difficulty of isolating sufficient numbers of intact glomeruli and by the inability to quantify different mRNA species. The purpose of this study was to identify and quantitate the individual mRNAs coding for alpha 1- and alpha 2-chains of type IV collagen in isolated, single glomeruli of normal mice at different ages. These data on normal ECM synthesis were necessary for the understanding of glomerulosclerosis, a condition characterized by excess deposition of collagen. Pools of freshly microdissected adult mouse glomeruli were reverse transcribed in situ, and alpha 1-IV and alpha 2-IV collagen mRNAs were individually amplified by means of specific primers and the polymerase chain reaction (PCR), according to a previously published method. A competitive PCR assay, based on utilization of mutated cDNAs, allowed the reproducible, quantitative, and separate determination of the absolute amounts of both alpha 1-IV and alpha 2-IV mRNAs measured, as their respective cDNAs, in one-tenth of one glomerulus. The levels of alpha 1-IV and alpha 2-IV collagen mRNA were 208 +/- 36.0 x 10(-4) and 161.2 +/- 18.6 x 10(-4) amol/glomerulus in 5-wk-old mice. There were no significant age-related differences at 8, 12, and 24 wk. The mean levels over this period were 60.2 +/- 4.9 x 10(-4) for alpha 1-IV collagen mRNA and 63.9 +/- 5.8 x 10(-4) amol/glomerulus for alpha 2-IV collagen mRNA. Two of three 24-wk-old mice had mild glomerulosclerosis.(ABSTRACT TRUNCATED AT 250 WORDS)


2007 ◽  
Vol 293 (4) ◽  
pp. R1717-R1721 ◽  
Author(s):  
Shawn E. Bearden ◽  
Erik Linn ◽  
Blair S. Ashley ◽  
Robin C. Looft-Wilson

Conducted vasodilation may coordinate blood flow in microvascular networks during skeletal muscle contraction. We tested the hypotheses that 1) exercise training enhances conducted vasodilation and 2) age-related changes in the capacity for conduction affect muscle perfusion during contractions. To address hypothesis 1, young (4–5 mo), adult (12–14 mo), and old (19–21 mo) C57BL6 male mice were sedentary or given access to running wheels for 8 wk. Voluntary running distances were significantly different (in km/day): young = 5.8 ± 0.1, adult = 3.9 ± 0.1, old = 2.2 ± 0.1 ( P < 0.05). In gluteus maximus muscles, conducted vasodilation was greater in adult than in young or old mice ( P < 0.05) and greater in young sedentary than in old sedentary mice but was not affected by exercise training. Citrate synthase activity was greater with exercise training at all ages ( P < 0.05). mRNA for endothelial nitric oxide synthase did not differ among ages, but endothelial nitric oxide synthase protein expression was greater in adult and old mice with exercise training ( P < 0.05). Connexin 37, connexin 40, and connexin 43 mRNA were not affected by exercise training and did not differ by age. To address hypothesis 2, perfusion of the gluteus maximus muscle during light to severe workloads was assessed by Doppler microprobe at 3–26 mo of age. Maximum perfusion decreased linearly across the lifespan. Perfusion at the highest workload, absolute and relative to maximum, decreased across the lifespan, with a steeper decline beyond ∼20 mo of age. In this model, 1) exercise training does not alter conducted vasodilation and 2) muscle perfusion is maintained up to near maximum workloads despite age-related changes in conducted vasodilation.


2018 ◽  
Author(s):  
Matthew Wortham ◽  
Jacqueline R. Benthuysen ◽  
Martina Wallace ◽  
Jeffrey N. Savas ◽  
Francesca Mulas ◽  
...  

SummaryPancreatic β-cell physiology changes substantially throughout life; yet, the mechanisms that drive these changes are poorly understood. Here, we performed comprehensive in vivo quantitative proteomic profiling of pancreatic islets from adolescent and one-year-old mice. The analysis revealed striking differences in abundance of enzymes controlling glucose metabolism. We show that these changes in protein abundance are associated with higher activities of glucose metabolic enzymes involved in coupling factor generation as well as increased activity of the coupling factor-dependent amplifying pathway of insulin secretion. Nutrient tracing and targeted metabolomics demonstrated accelerated accumulation of glucose-derived metabolites and coupling factors in islets from one-year-old mice, indicating that age-related changes in glucose metabolism contribute to improved glucose-stimulated insulin secretion with age. Together, our study provides the first in-depth characterization of age-related changes in the islet proteome and establishes metabolic rewiring as an important mechanism for age-associated changes in β-cell function.


2019 ◽  
Author(s):  
Daniel Clark ◽  
Sloane Brazina ◽  
Frank Yang ◽  
Diane Hu ◽  
Erene Niemi ◽  
...  

AbstractThe elderly population suffers from higher rates of complications during fracture healing that result in increased morbidity and mortality. Inflammatory dysregulation is associated with increased age and is a contributing factor to the myriad of age-related diseases. Therefore, we investigated age-related changes to an important cellular regulator of inflammation, the macrophage, and the impact on fracture healing outcomes. We demonstrated that old mice (24 months) have delayed fracture healing with significantly less bone and more cartilage compared to young mice (3 months). The quantity of infiltrating macrophages into the fracture callus was similar in old and young mice. However, RNA-seq analysis demonstrated distinct differences in the transcriptomes of macrophages derived from the fracture callus of old and young mice, with an upregulation of M1/pro-inflammatory genes in macrophages from old mice as well as dysregulation of other immune-related genes. Preventing infiltration of the fracture site by macrophages in old mice improved healing outcomes, with significantly more bone in the calluses of treated mice compared to age-matched controls. After preventing infiltration by macrophages, the macrophages within the fracture callus were collected and examined via RNA-seq analysis, and their transcriptome resembled macrophages from young calluses. Taken together, infiltrating macrophages from old mice demonstrate detrimental age-related changes, and depleting infiltrating macrophages can improve fracture healing in old mice.


Sign in / Sign up

Export Citation Format

Share Document