The effects of the Reynolds number and width ratio on the flow distribution in manifolds of liquid cooling modules for electronic packaging

1993 ◽  
Vol 20 (5) ◽  
pp. 607-617 ◽  
Author(s):  
Steve H. Choi ◽  
Sehyun Shin ◽  
Young I. Cho
2001 ◽  
Vol 3 (3) ◽  
pp. 165-172 ◽  
Author(s):  
Hoi Yeung

Service reservoirs were built to provide the dual function of balancing supply with demand and provision of adequate head to maintain pressure throughout the distribution network. Changing demographics in the UK and reducing leakage have led to significant increases in water age and hence increased risk of poor water quality. Computational fluid mechanics has been used to study the behaviour of a range of service reservoirs with a rectangular plan form. Detailed analysis of flow distribution and water age suggests that tanks with horizontal inlets are better mixed when compared with vertical top water level inlets. With increasing length to width ratio, the flow characteristics of tanks with vertical inlets increasingly resemble plug flow. A new multi-channel reactor model was developed to model the recirculations in service reservoirs. This simple model can be used to characterise the flow characteristics of service reservoirs from tracer test results.


Author(s):  
Tarek Abdel-Salam ◽  
Srikanth Pidugu

Multiphase phase flows occur in many engineering and bio-medical applications. Bubble formation in microchannels can be beneficial or harmful depending upon their influence on the operation and performance of microfludic devices. Potential uses of bubble generation found in many applications such as microreactors, micropump, and micromixers. In the present work the flow and mixing process in a passive microchannel mixer were numerically investigated. Effects of velocity, and inlet width ratio (Dgas/Dliquid) on the two phase flow were studied. Numerical results are obtained for 2-dimensional and 3-dimesional cases with a finite volume CFD code and using structured grids. Different liquid-gas Reynolds number ratios (Reliquid/Regas) were used ranging from 4 to 42. In addition, three values of the inlet width ratio (Dgas/Dliquid) were used. Results for the 3-D cases capture the actual shape of the air bubble with the thin film between the bubble and the walls. Also, increasing Reliquid increases the rate of the development of the air bubble. The bubble length increases with the increase of Dgas/Dliquid. For the same values of Re, the rate of growth of the bubble increases with the increase of Dgas/Dliquid. Finally, a correlation is provided to predict the length of the bubble with liquid-gas Reynolds number ratio (Reliquid/Regas) and tube width.


1968 ◽  
Vol 90 (3) ◽  
pp. 229-235 ◽  
Author(s):  
H. S. Fowler

The importance of flow distribution and stability leaving the impeller of a centrifugal compressor is discussed. Experiments on the flow in converging, parallel, and diffusing channels, representative of sections of impeller channels, are reported and discussed. The convergent or divergent character of the channel appears to have less influence on the flow pattern than on the stability. Change of Reynolds number appears to change the degree of nonuniformity of distribution in the channel, but change of rotation number appears to affect the distribution of the nonuniformity more. It appears that the influence of adjacent channels, and of the downstream flow-field in general, has a large effect on the flow within the rotating channel, particularly as regards detachment from the suction channel wall. “No man is an island unto himself,” and no element in an aerodynamic system can be divorced from its upstream or downstream neighbors.


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Yaser Hadad ◽  
Vahideh Radmard ◽  
Srikanth Rangarajan ◽  
Mahdi Farahikia ◽  
Gamal Refai-Ahmed ◽  
...  

Abstract The industry shift to multicore microprocessor architecture will likely cause higher temperature nonuniformity on chip surfaces, exacerbating the problem of chip reliability and lifespan. While advanced cooling technologies like two phase embedded cooling exist, the technological risks of such solutions make conventional cooling technologies more desirable. One such solution is remote cooling with heatsinks with sequential conduction resistance from chip to module. The objective of this work is to numerically demonstrate a novel concept to remotely cool chips with hotspots and maximize chip temperature uniformity using an optimized flow distribution under constrained geometric parameters for the heatsink. The optimally distributed flow conditions presented here are intended to maximize the heat transfer from a nonuniform chip power map by actively directing flow to a hotspot region. The hotspot-targeted parallel microchannel liquid cooling design is evaluated against a baseline uniform flow conventional liquid cooling design for the industry pressure drop limit of approximately 20 kPa. For an average steady-state heat flux of 145 W/cm2 on core areas (hotspots) and 18 W/cm2 on the remaining chip area (background), the chip temperature uniformity is improved by 10%. Moreover, the heatsink design has improved chip temperature uniformity without a need for any additional system level complexity, which also reduces reliability risks.


1978 ◽  
Author(s):  
B. Becker ◽  
O. von Schwerdtner ◽  
J. Günther

In the course of developing the compressor of a 100-MW gas turbine, extensive measurements took place on a test compressor provided with the four front stages scaled down to 1:4.63. The performance investigations have been supplemented by measurements of flow distribution down- and upstream of the blading, as well as at various intermediate axial positions. The test stand, operating in a closed circuit, allowed for the variation of the Reynolds number by changing the pressure level. The geometry of the inlet casing was variable as well, thus enabling the comparison of results with axial, two- and one-sided inlet flows. In this connection, the vibrational behavior of the rotating blades, besides the aerodynamics of the compressor, have been investigated. In case of the inlet casing with a two-sided inflow, additional flow field analyses have been performed using a model without compressor blading. The theoretical results calculated under the assumption of a rotational-symmetric flow, as well as the measurements at the gas turbine compressor itself, are used for comparison. The gas turbine compressor operating with a mass flow of 483 kg/s at ISO-conditions and a pressure ratio of 10 is running in the highest performance range of single-shaft compressors in operation today.


2018 ◽  
Vol 22 (5) ◽  
pp. 1987-1998 ◽  
Author(s):  
Jingyu Wang ◽  
Jian Yang ◽  
Long Li ◽  
Pei Qian ◽  
Qiuwang Wang

Packing configuration is widely used in chemical industries such as chemical re-action and chromatograph where the flow distribution has a significant effect on the performance of heat and mass transfer. In the present paper, numerical simulation is carried out to investigate the fluid-flow in three 2-D array configurations including in-line array, staggered array and hexagonal array. Meanwhile, a simplified equivalent circuit network model based on the Voronoi tessellation is proposed to simulate the flow models. It is found that firstly, the local Reynolds number could be used as a criterion to determine the flow regime. Flow with maximum local Reynolds number less than 40 could be regarded as Darcy flow. Secondly, the flow pattern can be well represented by the network model in the range of Darcy flow with the determination method of hydraulic resistance pro-posed in the present paper.


Author(s):  
T. Ma ◽  
Y. P. Ji ◽  
M. Zeng ◽  
Q. W. Wang

In this paper, the gas-side fluid flow distribution inside a bayonet tube heat exchanger with inner and outer fins is numerically studied. The heat exchanger is designed based on the traditional bayonet tube heat exchanger, where compact continuous plain fins and wave-like fins are mounted on the outside and inside surfaces of outer tubes, respectively, to enhance the heat transfer performance. However, gross flow maldistribution and large vortices are observed in the gas-side flow channel of baseline design. In order to improve the flow uniformity, three modified designs are proposed. Three vertical plates and two inclined plates are mounted on the inlet manifold for Model B. For the Model C, another six bending plates are mounted on the middle manifolds and three pairs of them are connected together. The Model D has a similar structure as Model C except for the two additional baffles. The results indicate that the flow distributions of Model C and D are much more uniform under different inlet Reynolds number, especially in the high inlet Reynolds number. Although the flow distribution of Model D is the best, its pressure drop is 2.6 times higher than that of Model C. Therefore, the design of Model C is the most optimized structure. Compared with the original design, the nonuniformity of Model C can be reduced by 42% while the pressure drop is almost the same under the baseline condition.


Author(s):  
S S Quadri ◽  
S F Benjamin ◽  
C A Roberts

This study investigates oblique entry pressure loss in automotive catalyst monoliths. Experiments have been performed on a specially designed flow rig using different lengths of monolith (17—100 mm) over a range of Reynolds number and angles of incidence (0–75°). Losses were found to be a function of Reynolds number and angle of incidence and a general correlation has been derived. Computational fluid dynamics predictions of the flow distribution across axisymmetric catalyst assemblies have been performed. Incorporating the oblique entry loss provided much better agreement with experimental data with the assumption that such losses were constant above an angle of incidence of 81°.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
Gongnan Xie ◽  
Jian Liu ◽  
Yanquan Liu ◽  
Bengt Sunden ◽  
Weihong Zhang

Liquid cooling incorporating microchannels are used to cool electronic chips in order to remove more heat load. However, such microchannels are often designed to be straight with rectangular cross section. In this paper, on the basis of straight microchannels having rectangular cross section (SRC), longitudinal-wavy microchannel (LWC), and transversal microchannel (TWC) were designed, respectively, and then the corresponding laminar flow and heat transfer were investigated numerically. Among them, the channel wall of LWC undulates along the flow direction according to a sinusoidal function while the TWC undulates along the transversal direction. The numerical results show that for removing an identical heat load, the overall thermal resistance of the LWC is decreased with increasing inlet Reynolds number while the pressure drop is increased greatly, so that the overall thermal performance of LWC is inferior to that of SRC under the considered geometries. On the contrary, TWC has a great potential to reduce the pressure drop compared to SRC, especially for higher wave amplitudes at the same Reynolds number. Thus the overall thermal performance of TWC is superior to that of SRC. It is suggested that the TWC can be used to cool chips effectively with much smaller pressure drop penalty. In addition to the overall thermal resistance, other criteria of evaluation of the overall thermal performance, e.g., (Nu/Nu0)/(f/f0) and (Nu/Nu0)/(f/f0)1/3, are applied and some controversial results are obtained.


Sign in / Sign up

Export Citation Format

Share Document