214 The activation of transglutaminase 1 is reponsible for calcium-induced insoluble cornified envelope formation of HaCaT cells

1995 ◽  
Vol 10 (1) ◽  
pp. 98
Author(s):  
S.-Y. Kim ◽  
K. Yoneda ◽  
P.M. Steinert
2021 ◽  
pp. 1-13
Author(s):  
Philip W. Wertz

Cornified cells of the stratum corneum have a monolayer of an unusual lipid covalently attached to the outer surface. This is referred to as the corneocyte lipid envelope (CLE). It consists of a monolayer of ω-hydroxyceramides covalently attached to the outer surface of the cornified envelope. The CLE is essential for proper barrier function of the skin and is derived from linoleate-rich acylglucosylceramides synthesized in the viable epidermis. Biosynthesis of acylglucosylceramide and its conversion to the cornified envelope is complex. Acylglucosylceramide in the bounding membrane of the lamellar granule is the precursor of the CLE. The acylglucosylceramide in the limiting membrane of the lamellar granule may be oriented with the glucosyl moiety on the inside. Conversion of the acylglucosylceramide to the CLE requires removal of the glucose by action of a glucocerebrosidase. The ester-linked fatty acid may be removed by an as yet unidentified esterase, and the resulting ω-hydroxyceramide may become ester linked to the outer surface of the cornified envelope through action of transglutaminase 1. Prior to removal of ester-linked fatty acids, linoleate is oxidized to an epoxy alcohol through action of 2 lipoxygenases. This can be further oxidized to an epoxy-enone, which can spontaneously attach to the cornified envelope through Schiff’s base formation. Mutations of genes coding for enzymes involved in biosynthesis of the CLE result in ichthyosis, often accompanied by neurologic dysfunction. The CLE is recognized as essential for barrier function of skin, but many questions about details of this essentiality remain. What are the relative roles of the 2 mechanisms of lipid attachment? What is the orientation of acylglucosylceramide in the bounding membrane of lamellar granules? Some evidence supports a role for CLE as a scaffold upon which intercellular lamellae unfold, but other evidence does not support this role. There is also controversial evidence for a role in stratum corneum cohesion. Evidence is presented to suggest that covalently bound ω-hydroxyceramides serve as a reservoir for free sphingosine that can serve in communicating with the viable epidermis and act as a potent broad-acting antimicrobial at the skin surface. Many questions remain.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jie Zhang ◽  
Peilang Yang ◽  
Dan Liu ◽  
Min Gao ◽  
Jizhuang Wang ◽  
...  

Keratinocyte differentiation dysfunction in diabetic skin is closely related to impaired skin barrier functions. We investigated the effects of c-Myc and S100A6 on Human immortal keratinocyte line (HaCaT) or keratinocyte differentiation and potential mechanisms. The expression levels of differentiation makers such as transglutaminase 1 (TGM1), loricrin (LOR), and keratin 1 (K1) were significantly reduced, while the expression of c-Myc was significantly increased in HaCaT cells cultured in high glucose and wound margin keratinocytes from diabetic rats and human patients. Overexpression of c-Myc caused differentiation dysfunction of HaCaT, while knocking down c-Myc promoted differentiation. High glucose increased the expression of c-Myc and inhibited differentiation in HaCaT cells by activating the WNT/β-catenin pathway. Moreover, inhibition of c-Myc transcriptional activity alleviated the differentiation dysfunction caused by high glucose or overexpression of c-Myc. c-Myc binds to the S100A6 promoter to directly regulate S100A6 expression and high glucose promoted S100A6 transcription. The expression of S100A6 was increased in HaCaT cultured with high glucose and wound margin keratinocytes from diabetic rats and human patients. However, the expression of S100A6 was decreased during normal HaCaT differentiation. HaCaT cells treated with S100A6 recombinant protein showed differentiation dysfunction. The expressions of TGM1, LOR and K1 in knockdown S100A6 HaCaT cells were higher than those in the control group. Overexpression of c-Myc or high glucose caused differentiation dysfunction of HaCaT cells, and was rescued by knocking down S100A6. These findings illustrate a new mechanism by which c-Myc upregulated by high glucose inhibits HaCaT differentiation by directly activating S100A6 transcription. Thus, c-Myc and S100A6 may be potential targets for the treatment of chronic diabetic wounds.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Sang Hee Park ◽  
Young-Su Yi ◽  
Mi-Yeon Kim ◽  
Jae Youl Cho

Despite a large number of studies reporting a variety of biological and pharmacological activities of Momordica charantia, its skin protective properties are poorly understood. The present study aimed to explore the skin protective properties of Momordica charantia methanol extract (Mc-ME) and the underlying mechanism in keratinocytes, fibroblasts, and melanocytes. Mc-ME exhibited an antioxidative property by decreasing radical levels in HaCaT keratinocytes and a cytoprotective property in H2O2-damaged HaCaT cells, which was mediated by increasing the expression or activation of Kelch-like ECH-associated protein 1 (KEAP1), HO-1, p85/PI3K, and AKT. Mc-ME was also active against wrinkle formation by regulating the activity or expression of tissue remodeling factors such as elastase, type 1 collagen, and matrix metalloproteinase (MMP)-1 and -9 and tissue-protecting enzymes such as hemeoxygenase-1 (HO-1) and sirtuin 1 (SIRT1) in NIH3T3 fibroblasts and HaCaT cells, in addition to increasing the proliferation of HaCaT cells. Mc-ME also showed antidehydration properties by inducing the expression of natural moisturizing factors such as filaggrin (FLG), transglutaminase-1 (TGM-1), and hyaluronic acid synthase (HAS)-1, -2, and -3 in HaCaT cells. Moreover, Mc-ME showed an antimelanogenic property by inhibiting the synthesis and secretion of melanin from B16F10 melanoma cells via suppression of tyrosinase activity. Taken together, these results suggest that Mc-ME plays a skin protective role through its antioxidative, cytoprotective, skin remodeling, moisturizing, and antimelanogenic properties and might be a new and promising skin protective cosmeceutical.


Planta Medica ◽  
2015 ◽  
Vol 81 (11) ◽  
Author(s):  
J Wedler ◽  
E Garo ◽  
K Rusanov ◽  
M Hamburger ◽  
I Atanassov ◽  
...  
Keyword(s):  

Planta Medica ◽  
2015 ◽  
Vol 81 (16) ◽  
Author(s):  
J Wedler ◽  
E Garo ◽  
K Rusanov ◽  
M Hamburger ◽  
I Atanassov ◽  
...  
Keyword(s):  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 271
Author(s):  
Lucía Yepes-Molina ◽  
José A. Hernández ◽  
Micaela Carvajal

Pomegranate extract (PG-E) has been reported to exert a protective effect on the skin due to its antioxidant activity. Ingredients rich in phenolic compounds are unstable in extract solutions, and, therefore, the use of a suitable nanosystem to encapsulate this type of extract could be necessary in different biotechnological applications. Thus, we investigated the capacity of Brassica oleracea L. (cauliflower) inflorescence vesicles (CI-vesicles) to encapsulate PG-E and determined the stability and the antioxidant capacity of the system over time. In addition, the protective effect against UV radiation and heavy metals in HaCaT cells was also tested. The CI-vesicles had an entrapment efficiency of around 50%, and accelerated stability tests did not show significant changes in the parameters tested. The results for the HaCaT cells showed the non-cytotoxicity of the CI-vesicles containing PG-E and their protection against heavy metals (lead acetate and mercuric chloride) and UV-B radiation through a reduction of oxidative stress. The reduction of the percentage of deleted mtDNA (mtDNA4977, “common deletion”) in UV-treated HaCaT cells due to the presence of CI-vesicles containing PG-E indicated the mechanism of protection. Therefore, the effects of CI-vesicles loaded with PG-E against oxidative stress support their utilization as natural cosmeceuticals to protect skin health against external damage from environmental pollution and UV radiation.


2020 ◽  
Vol 11 (1) ◽  
pp. 110
Author(s):  
Giulia Ricci ◽  
Alessandra Cucina ◽  
Sara Proietti ◽  
Simona Dinicola ◽  
Francesca Ferranti ◽  
...  

Changes in cell–matrix and cell-to-cell adhesion patterns are dramatically fostered by the microgravity exposure of living cells. The modification of adhesion properties could promote the emergence of a migrating and invasive phenotype. We previously demonstrated that short exposure to the simulated microgravity of human keratinocytes (HaCaT) promotes an early epithelial–mesenchymal transition (EMT). Herein, we developed this investigation to verify if the cells maintain the acquired invasive phenotype after an extended period of weightlessness exposure. We also evaluated cells’ capability in recovering epithelial characteristics when seeded again into a normal gravitational field after short microgravity exposure. We evaluated the ultra-structural junctional features of HaCaT cells by Transmission Electron Microscopy and the distribution pattern of vinculin and E-cadherin by confocal microscopy, observing a rearrangement in cell–cell and cell–matrix interactions. These results are mirrored by data provided by migration and invasion biological assay. Overall, our studies demonstrate that after extended periods of microgravity, HaCaT cells recover an epithelial phenotype by re-establishing E-cadherin-based junctions and cytoskeleton remodeling, both being instrumental in promoting a mesenchymal–epithelial transition (MET). Those findings suggest that cytoskeletal changes noticed during the first weightlessness period have a transitory character, given that they are later reversed and followed by adaptive modifications through which cells miss the acquired mesenchymal phenotype.


2021 ◽  
Vol 22 (8) ◽  
pp. 4015
Author(s):  
Kyoung Ok Jang ◽  
Youn Woo Lee ◽  
Hangeun Kim ◽  
Dae Kyun Chung

Staphylococcus aureus is a species of Gram-positive staphylococcus. It can cause sinusitis, respiratory infections, skin infections, and food poisoning. Recently, it was discovered that S. aureus infects epithelial cells, but the interaction between S. aureus and the host is not well known. In this study, we confirmed S. aureus to be internalized by HaCaT cells using the ESAT-6-like protein EsxB and amplified within the host over time by escaping host immunity. S. aureus increases the expression of decay-accelerating factor (CD55) on the surfaces of host cells, which inhibits the activation of the complement system. This mechanism makes it possible for S. aureus to survive in host cells. S. aureus, sufficiently amplified within the host, is released through the initiation of cell death. On the other hand, the infected host cells increase their surface expression of UL16 binding protein 1 to inform immune cells that they are infected and try to be eliminated. These host defense systems seem to involve the alteration of tight junctions and the induction of ligand expression to activate immune cells. Taken together, our study elucidates a novel aspect of the mechanisms of infection and immune system evasion for S. aureus.


Sign in / Sign up

Export Citation Format

Share Document