Comparative Biology of the Normal Lung Extracellular Matrix

Author(s):  
Stephanie A. Matthes ◽  
Ryan Hadley ◽  
Jesse Roman ◽  
Eric S. White
2018 ◽  
Vol 29 (18) ◽  
pp. 2165-2175 ◽  
Author(s):  
Elizabeth Monaghan-Benson ◽  
Erika S. Wittchen ◽  
Claire M. Doerschuk ◽  
Keith Burridge

Idiopathic pulmonary fibrosis (IPF) is an incurable disease of the lung that is characterized by excessive deposition of extracellular matrix (ECM), resulting in disruption of normal lung function. The signals regulating fibrosis include both transforming growth factor beta (TGF-β) and tissue rigidity and a major signaling pathway implicated in fibrosis involves activation of the GTPase RhoA. During studies exploring how elevated RhoA activity is sustained in IPF, we discovered that not only is RhoA activated by profibrotic stimuli but also that the expression of Rnd3, a major antagonist of RhoA activity, and the activity of p190RhoGAP (p190), a Rnd3 effector, are both suppressed in IPF fibroblasts. Restoration of Rnd3 levels in IPF fibroblasts results in an increase in p190 activity, a decrease in RhoA activity and a decrease in the overall fibrotic phenotype. We also find that treatment with IPF drugs nintedanib and pirfenidone decreases the fibrotic phenotype and RhoA activity through up-regulation of Rnd3 expression and p190 activity. These data provide evidence for a pathway in IPF where fibroblasts down-regulate Rnd3 levels and p190 activity to enhance RhoA activity and drive the fibrotic phenotype.


Thorax ◽  
2021 ◽  
pp. thoraxjnl-2020-215962
Author(s):  
Seidai Sato ◽  
Sy Giin Chong ◽  
Chandak Upagupta ◽  
Toyoshi Yanagihara ◽  
Takuya Saito ◽  
...  

RationaleExtracellular vesicles (EVs) are small lipid vesicles, and EV-coupled microRNAs (miRNAs) are important modulators of biological processes. Fibrocytes are circulating bone marrow-derived cells that migrate into the injured lungs and contribute to fibrogenesis. The question of whether EV-coupled miRNAs derived from fibrocytes are able to regulate pulmonary fibrosis has not been addressed yet.MethodsPulmonary fibrosis was induced in rats by intratracheal administration of an adenoviral gene vector encoding active transforming growth factor-β1 (TGF-β1) or control vector. Primary fibrocytes and fibroblasts were cultured from rat lungs and were sorted by anti-CD45 magnetic beads. Human circulating fibrocytes and fibrocytes in bronchoalveolar lavage fluid (BALF) were isolated by fibronectin-coated dishes. Fibrocytes were cultured on different stiffness plates or decellularised lung scaffolds. We also determined the effects of extracellular matrix (ECM) and recombinant TGF-β1 on the cellular and EV-coupled miRNA expression of fibrocytes.ResultsThe EVs of fibrocytes derived from fibrotic lungs significantly upregulated the expression of col1a1 of fibroblasts. Culturing on rigid plates or fibrotic decellularised lung scaffolds increased miR-21-5 p expression compared with soft plates or normal lung scaffolds. Dissolved ECM collected from fibrotic lungs and recombinant TGF-β1 increased miR-21-5 p expression on fibrocytes, and these effects were attenuated on soft plates. Fibrocytes from BALF collected from fibrotic interstitial pneumonia patients showed higher miR-21-5 p expression than those from other patients.ConclusionsOur results indicate that ECM contributes to fibrogenesis through biomechanical and biochemical effects on miRNA expression in fibrocytes.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2145
Author(s):  
Tillie Louise Hackett ◽  
Emmanuel Twumasi Osei

The lung extracellular matrix (ECM) is a complex and dynamic mixture of fibrous proteins (collagen, elastin), glycoproteins (fibronectin, laminin), glycosaminoglycans (heparin, hyaluronic acid) and proteoglycans (perlecan, versican), that are essential for normal lung development and organ health [...]


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250109
Author(s):  
Mervi Kreus ◽  
Siri Lehtonen ◽  
Sini Skarp ◽  
Riitta Kaarteenaho

Idiopathic pulmonary fibrosis (IPF) and lung cancer share common risk factors, epigenetic and genetic alterations, the activation of similar signaling pathways and poor survival. The aim of this study was to examine the gene expression profiles of stromal cells from patients with IPF and lung adenocarcinoma (ADC) as well as from normal lung. The gene expression levels of cultured stromal cells derived from non-smoking patients with ADC from the tumor (n = 4) and the corresponding normal lung (n = 4) as well as from patients with IPF (n = 4) were investigated with Affymetrix microarrays. The expression of collagen type IV alpha 1 chain, periostin as well as matrix metalloproteinase-1 and -3 in stromal cells and lung tissues were examined with quantitative real-time reverse transcriptase polymerase chain reaction and immunohistochemistry, respectively. Twenty genes were similarly up- or down-regulated in IPF and ADC compared to control, while most of the altered genes in IPF and ADC were differently expressed, including several extracellular matrix genes. Collagen type IV alpha 1 chain as well as matrix metalloproteinases-1 and -3 were differentially expressed in IPF compared to ADC. Periostin was up-regulated in both IPF and ADC in comparison to control. All studied factors were localized by immunohistochemistry in stromal cells within fibroblast foci in IPF and stroma of ADC. Despite the similarities found in gene expressions of IPF and ADC, several differences were also detected, suggesting that the molecular changes occurring in these two lung illnesses are somewhat different.


2020 ◽  
Vol 55 (4) ◽  
pp. e4450 ◽  
Author(s):  
Peggi M. Angel ◽  
Evelyn Bruner ◽  
Jennifer Bethard ◽  
Cassandra L. Clift ◽  
Lauren Ball ◽  
...  

2012 ◽  
Vol 303 (3) ◽  
pp. L169-L180 ◽  
Author(s):  
Aleksandar Marinković ◽  
Justin D. Mih ◽  
Jin-Ah Park ◽  
Fei Liu ◽  
Daniel J. Tschumperlin

Lung fibroblast functions such as matrix remodeling and activation of latent transforming growth factor-β1 (TGF-β1) are associated with expression of the myofibroblast phenotype and are directly linked to fibroblast capacity to generate force and deform the extracellular matrix. However, the study of fibroblast force-generating capacities through methods such as traction force microscopy is hindered by low throughput and time-consuming procedures. In this study, we improved at the detail level methods for higher-throughput traction measurements on polyacrylamide hydrogels using gel-surface-bound fluorescent beads to permit autofocusing and automated displacement mapping, and transduction of fibroblasts with a fluorescent label to streamline cell boundary identification. Together these advances substantially improve the throughput of traction microscopy and allow us to efficiently compute the forces exerted by lung fibroblasts on substrates spanning the stiffness range present in normal and fibrotic lung tissue. Our results reveal that lung fibroblasts dramatically alter the forces they transmit to the extracellular matrix as its stiffness changes, with very low forces generated on matrices as compliant as normal lung tissue. Moreover, exogenous TGF-β1 selectively accentuates tractions on stiff matrices, mimicking fibrotic lung, but not on physiological stiffness matrices, despite equivalent changes in Smad2/3 activation. Taken together, these results demonstrate a pivotal role for matrix mechanical properties in regulating baseline and TGF-β1-stimulated contraction of lung fibroblasts and suggest that stiff fibrotic lung tissue may promote myofibroblast activation through contractility-driven events, whereas normal lung tissue compliance may protect against such feedback amplification of fibroblast activation.


Author(s):  
L. Terracio ◽  
A. Dewey ◽  
K. Rubin ◽  
T.K. Borg

The recognition and interaction of cells with the extracellular matrix (ECM) effects the normal physiology as well as the pathology of all multicellular organisms. These interactions have been shown to influence the growth, development, and maintenance of normal tissue function. In previous studies, we have shown that neonatal cardiac myocytes specifically interacts with a variety of ECM components including fibronectin, laminin, and collagens I, III and IV. Culturing neonatal myocytes on laminin and collagen IV induces an increased rate of both cell spreading and sarcomerogenesis.


Author(s):  
J. Roemer ◽  
S.R. Simon

We are developing an in vitro interstitial extracellular matrix (ECM) system for study of inflammatory cell migration. Falcon brand Cyclopore membrane inserts of various pore sizes are used as a support substrate for production of ECM by R22 rat aortic smooth muscle cells. Under specific culture conditions these cells produce a highly insoluble matrix consisting of typical interstitial ECM components, i.e.: types I and III collagen, elastin, proteoglycans and fibronectin.


Sign in / Sign up

Export Citation Format

Share Document