Insights on a global Extreme Rainfall Detection System

2022 ◽  
pp. 135-155
Author(s):  
Paola Mazzoglio
2019 ◽  
Vol 11 (6) ◽  
pp. 677 ◽  
Author(s):  
Paola Mazzoglio ◽  
Francesco Laio ◽  
Simone Balbo ◽  
Piero Boccardo ◽  
Franca Disabato

Many studies have shown a growing trend in terms of frequency and severity of extreme events. As never before, having tools capable to monitor the amount of rain that reaches the Earth’s surface has become a key point for the identification of areas potentially affected by floods. In order to guarantee an almost global spatial coverage, NASA Global Precipitation Measurement (GPM) IMERG products proved to be the most appropriate source of information for precipitation retrievement by satellite. This study is aimed at defining the IMERG accuracy in representing extreme rainfall events for varying time aggregation intervals. This is performed by comparing the IMERG data with the rain gauge ones. The outcomes demonstrate that precipitation satellite data guarantee good results when the rainfall aggregation interval is equal to or greater than 12 h. More specifically, a 24-h aggregation interval ensures a probability of detection (defined as the number of hits divided by the total number of observed events) greater than 80%. The outcomes of this analysis supported the development of the updated version of the ITHACA Extreme Rainfall Detection System (ERDS: erds.ithacaweb.org). This system is now able to provide near real-time alerts about extreme rainfall events using a threshold methodology based on the mean annual precipitation.


Proceedings ◽  
2019 ◽  
Vol 18 (1) ◽  
pp. 1
Author(s):  
Paola Mazzoglio ◽  
Francesco Laio ◽  
Constantin Sandu ◽  
Piero Boccardo

Flood events represent some of the most catastrophic natural disasters, especially in localities where appropriate measurement instruments and early warning systems are not available. Remotely sensed data can often help to obtain near real-time rainfall information with a global spatial coverage without the limitations that characterize other instruments. In order to achieve this goal, a freely accessible Extreme Rainfall Detection System (ERDS—erds.ithacaweb.org) was developed and implemented by ITHACA with the aim of monitoring and forecasting exceptional rainfall events and providing information in an understandable way for researchers as well as non-specialized users. The near real-time rainfall monitoring is performed by taking advantage of NASA GPM (Global Precipitation Measurement) IMERG (Integrated Multi-satellite Retrievals for GPM) half-hourly data (one of the most advanced rainfall measurements provided by satellite). This study aims to evaluate ERDS performance in the detection of the extreme rainfall that led to a massive flood event in Queensland (Australia) between January and February 2019. Due to the impressive amount of rainfall that affected the area, Flinders River (one of the longest Australian rivers) overflowed, expanding to a width of tens of kilometers. Several cities were also partially affected and Copernicus Emergency Management Service was activated with the aim of providing an assessment of the impact of the event. In this research, ERDS outputs were validated using both in situ and open source remotely sensed data. Specifically, taking advantage of both NASA MODIS (Moderate-resolution Imaging Spectroradiometer) and Copernicus Sentinel datasets, it was possible to gain a clear look at the full extent of the flood event. GPM data proved to be a reliable source of rainfall information for the evaluation of areas affected by heavy rainfall. By merging these data, it was possible to recreate the dynamics of the event.


Proceedings ◽  
2019 ◽  
Vol 18 (1) ◽  
pp. 1
Author(s):  
Paola Mazzoglio ◽  
Francesco Laio ◽  
Constantin Sandu ◽  
Piero Boccardo

Flood events represent some of the most catastrophic natural disasters, especially in localities where appropriate measurement instruments and early warning systems are not available. Remotely sensed data can often help to obtain near real-time rainfall information with a global spatial coverage without the limitations that characterize other instruments. In order to achieve this goal, a freely accessible Extreme Rainfall Detection System (ERDS—erds.ithacaweb.org) was developed and implemented by ITHACA with the aim of monitoring and forecasting exceptional rainfall events and providing information in an understandable way for researchers as well as non-specialized users. The near real-time rainfall monitoring is performed by taking advantage of NASA GPM (Global Precipitation Measurement) IMERG (Integrated Multi-satellite Retrievals for GPM) half-hourly data (one of the most advanced rainfall measurements provided by satellite). This study aims to evaluate ERDS performance in the detection of the extreme rainfall that led to a massive flood event in Queensland (Australia) between January and February 2019. Due to the impressive amount of rainfall that affected the area, Flinders River (one of the longest Australian rivers) overflowed, expanding to a width of tens of kilometers. Several cities were also partially affected and Copernicus Emergency Management Service was activated with the aim of providing an assessment of the impact of the event. In this research, ERDS outputs were validated using both in situ and open source remotely sensed data. Specifically, taking advantage of both NASA MODIS (Moderate-resolution Imaging Spectroradiometer) and Copernicus Sentinel datasets, it was possible to gain a clear look at the full extent of the flood event. GPM data proved to be a reliable source of rainfall information for the evaluation of areas affected by heavy rainfall. By merging these data, it was possible to recreate the dynamics of the event.


Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 86
Author(s):  
Paola Mazzoglio ◽  
Andrea Parodi ◽  
Antonio Parodi

In this work, we describe the integration of Weather and Research Forecasting (WRF) forecasts produced by CIMA Research Foundation within ITHACA Extreme Rainfall Detection System (ERDS) to increase the forecasting skills of the overall early warning system. The entire workflow is applied to the heavy rainfall event that affected the city of Palermo on 15 July 2020, causing urban flooding due to an exceptional rainfall amount of more than 130 mm recorded in about 2.5 h. This rainfall event was not properly forecasted by meteorological models operational at the time of the event, thus not allowing to issue an adequate alert over that area. The results highlight that the improvement in the quantitative precipitation scenario forecast skills, supported by the adoption of the H2020 LEXIS computing facilities and by the assimilation of in situ observations, allowed the ERDS system to improve the prediction of the peak rainfall depths, thus paving the way to the potential issuing of an alert over the Palermo area.


Author(s):  
J. B. Warren

Electron diffraction intensity profiles have been used extensively in studies of polycrystalline and amorphous thin films. In previous work, diffraction intensity profiles were quantitized either by mechanically scanning the photographic emulsion with a densitometer or by using deflection coils to scan the diffraction pattern over a stationary detector. Such methods tend to be slow, and the intensities must still be converted from analog to digital form for quantitative analysis. The Instrumentation Division at Brookhaven has designed and constructed a electron diffractometer, based on a silicon photodiode array, that overcomes these disadvantages. The instrument is compact (Fig. 1), can be used with any unmodified electron microscope, and acquires the data in a form immediately accessible by microcomputer.Major components include a RETICON 1024 element photodiode array for the de tector, an Analog Devices MAS-1202 analog digital converter and a Digital Equipment LSI 11/2 microcomputer. The photodiode array cannot detect high energy electrons without damage so an f/1.4 lens is used to focus the phosphor screen image of the diffraction pattern on to the photodiode array.


Author(s):  
P. Trebbia ◽  
P. Ballongue ◽  
C. Colliex

An effective use of electron energy loss spectroscopy for chemical characterization of selected areas in the electron microscope can only be achieved with the development of quantitative measurements capabilities.The experimental assembly, which is sketched in Fig.l, has therefore been carried out. It comprises four main elements.The analytical transmission electron microscope is a conventional microscope fitted with a Castaing and Henry dispersive unit (magnetic prism and electrostatic mirror). Recent modifications include the improvement of the vacuum in the specimen chamber (below 10-6 torr) and the adaptation of a new electrostatic mirror.The detection system, similar to the one described by Hermann et al (1), is located in a separate chamber below the fluorescent screen which visualizes the energy loss spectrum. Variable apertures select the electrons, which have lost an energy AE within an energy window smaller than 1 eV, in front of a surface barrier solid state detector RTC BPY 52 100 S.Q. The saw tooth signal delivered by a charge sensitive preamplifier (decay time of 5.10-5 S) is amplified, shaped into a gaussian profile through an active filter and counted by a single channel analyser.


Author(s):  
Huang Min ◽  
P.S. Flora ◽  
C.J. Harland ◽  
J.A. Venables

A cylindrical mirror analyser (CMA) has been built with a parallel recording detection system. It is being used for angular resolved electron spectroscopy (ARES) within a SEM. The CMA has been optimised for imaging applications; the inner cylinder contains a magnetically focused and scanned, 30kV, SEM electron-optical column. The CMA has a large inner radius (50.8mm) and a large collection solid angle (Ω > 1sterad). An energy resolution (ΔE/E) of 1-2% has been achieved. The design and performance of the combination SEM/CMA instrument has been described previously and the CMA and detector system has been used for low voltage electron spectroscopy. Here we discuss the use of the CMA for ARES and present some preliminary results.The CMA has been designed for an axis-to-ring focus and uses an annular type detector. This detector consists of a channel-plate/YAG/mirror assembly which is optically coupled to either a photomultiplier for spectroscopy or a TV camera for parallel detection.


Author(s):  
G.F. Bastin ◽  
H.J.M. Heijligers

Among the ultra-light elements B, C, N, and O nitrogen is the most difficult element to deal with in the electron probe microanalyzer. This is mainly caused by the severe absorption that N-Kα radiation suffers in carbon which is abundantly present in the detection system (lead-stearate crystal, carbonaceous counter window). As a result the peak-to-background ratios for N-Kα measured with a conventional lead-stearate crystal can attain values well below unity in many binary nitrides . An additional complication can be caused by the presence of interfering higher-order reflections from the metal partner in the nitride specimen; notorious examples are elements such as Zr and Nb. In nitrides containing these elements is is virtually impossible to carry out an accurate background subtraction which becomes increasingly important with lower and lower peak-to-background ratios. The use of a synthetic multilayer crystal such as W/Si (2d-spacing 59.8 Å) can bring significant improvements in terms of both higher peak count rates as well as a strong suppression of higher-order reflections.


Author(s):  
G. W. Hacker ◽  
I. Zehbe ◽  
J. Hainfeld ◽  
A.-H. Graf ◽  
C. Hauser-Kronberger ◽  
...  

In situ hybridization (ISH) with biotin-labeled probes is increasingly used in histology, histopathology and molecular biology, to detect genetic nucleic acid sequences of interest, such as viruses, genetic alterations and peptide-/protein-encoding messenger RNA (mRNA). In situ polymerase chain reaction (PCR) (PCR in situ hybridization = PISH) and the new in situ self-sustained sequence replication-based amplification (3SR) method even allow the detection of single copies of DNA or RNA in cytological and histological material. However, there is a number of considerable problems with the in situ PCR methods available today: False positives due to mis-priming of DNA breakdown products contained in several types of cells causing non-specific incorporation of label in direct methods, and re-diffusion artefacts of amplicons into previously negative cells have been observed. To avoid these problems, super-sensitive ISH procedures can be used, and it is well known that the sensitivity and outcome of these methods partially depend on the detection system used.


Sign in / Sign up

Export Citation Format

Share Document