Thermogravimetric analyzer

2022 ◽  
pp. 223-240
Author(s):  
Mukesh Kumar Singh ◽  
Annika Singh
2021 ◽  
Vol 13 (8) ◽  
pp. 4246
Author(s):  
Shih-Wei Yen ◽  
Wei-Hsin Chen ◽  
Jo-Shu Chang ◽  
Chun-Fong Eng ◽  
Salman Raza Naqvi ◽  
...  

This study investigated the kinetics of isothermal torrefaction of sorghum distilled residue (SDR), the main byproduct of the sorghum liquor-making process. The samples chosen were torrefied isothermally at five different temperatures under a nitrogen atmosphere in a thermogravimetric analyzer. Afterward, two different kinetic methods, the traditional model-free approach, and a two-step parallel reaction (TPR) kinetic model, were used to obtain the torrefaction kinetics of SDR. With the acquired 92–97% fit quality, which is the degree of similarity between calculated and real torrefaction curves, the traditional method approached using the Arrhenius equation showed a poor ability on kinetics prediction, whereas the TPR kinetic model optimized by the particle swarm optimization (PSO) algorithm showed that all the fit qualities are as high as 99%. The results suggest that PSO can simulate the actual torrefaction kinetics more accurately than the traditional kinetics approach. Moreover, the PSO method can be further employed for simulating the weight changes of reaction intermediates throughout the process. This computational method could be used as a powerful tool for industrial design and optimization in the biochar manufacturing process.


2013 ◽  
Vol 8 (1) ◽  
pp. 155892501300800 ◽  
Author(s):  
Utkarsh Sata ◽  
Eugene Wilusz ◽  
Steve Mlynarek ◽  
Gopal Coimbatore ◽  
Ronald Kendall ◽  
...  

Because of the current threat of toxic chemicals and chemical warfare agents, personal protection is important for soldiers and first responders, as well as the civilian population. This paper describes the development of a cotton non-particulate nonwoven composite fabric and the evaluation of its adsorption capability for protection against toxic chemical ingress which can be harmful or lethal. In addition, this paper focuses on the evaluation of toxic chemical adsorption capabilities of various chemical protective substrates that have the potential to be used in military applications. The development of a three-layered cotton based decontamination wipe and its adsorption of 0.1 % w/v pinacolyl methylphosphonate in butanol, is presented. Adsorption is quantified using a modified gravimetric procedure developed using a thermogravimetric analyzer. The results demonstrate the adsorption performance of a new cotton-based, non-particulate flexible composite that has a high potential to be used as a portable decontamination wipe. This research is unique in the area of individual protection and addresses the requirements of the U.S. Department of Defense (DoD) for seeking and evaluating highly efficient, non-particulate, and skin-friendly materials that provide necessary chemical protection while minimizing any discomfort or irritation.


2019 ◽  
Vol 31 (9-10) ◽  
pp. 1101-1111 ◽  
Author(s):  
Yunhua Lu ◽  
Jican Hao ◽  
Guoyong Xiao ◽  
Lin Li ◽  
Zhizhi Hu ◽  
...  

The diamine, 9,9-bis[4-(4-amino-3-hydroxylphenoxy)phenyl]fluorene (BAHPPF) was synthesized by the modified two-step method. Then, a series of acetate-containing copoly(ether-imide)s were prepared by the copolymerization of BAHPPF, 9,9-bis(4-aminophenyl)fluorene (BAF) and 2,2′-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) followed by chemical imidization. The structures and properties of the BAHPPF and copoly(ether-imide)s were characterized by nuclear magnetic resonance spectrometer (NMR), Fourier transform infrared spectrometer (FTIR), X-ray diffractometer (XRD), differential scanning calorimeter (DSC), thermogravimetric analyzer (TGA), ultraviolet-visible spectrophotometer (UV-VIS), and tensile testing. Single gas permeation performances of these copoly(ether-imide)s were also studied for five representative gases of interest including H2, O2, N2, CO2, and CH4. The experimental results showed that the copoly(ether-imide)s showed excellent optical properties with high light transmittance above 80.2% at 450 nm. The glass transition temperature of these copolymers were higher than 333°C. Their tensile strength and Young’s module also increased, and the elongation decreased with the decrease of BAHPPF. High gas permeabilities of copoly(ether-imide)s were obtained, and the ideal selectivity of CO2/CH4 was improved due to the introduction of acetate group and flexible ether linkage. These copoly(ether-imide)s could be applied to the field of optics and gas separation.


Author(s):  
Zhanlong Song ◽  
Mingyao Zhang

The sulfidation experiments with two kinds of Chinese calcined limestones were performed in a pressurized thermogravimetric analyzer (PTGA). The effects of reaction temperature (700–950°C), total pressure (0–1MPa), particle size (0.055–2mm), and H2S concentration (0.1–4%) on the sorbent conversions were analyzed. Morphological studies with scanning electron microscope and energy dispersive spectroscopy (SEM-EDS) equipment were made to obtain the pictures of solid surface and of the cross-sectioned samples. Nitrogen adsorption measurements were applied to determine the pore structure properties of the particles. Experimental results show that the sulfidation rate increases with total pressure when the volume fraction of H2S is constant. However, the rate of sulfidation decreases with the increase of total pressure when the H2S partial pressure is constant. Reaction temperature affects the sulfidation greatly, and the reaction rate increases with temperature. The sulfidation is the first order with respect to H2S partial pressure. Moreover, larger particles result in lower conversions and reaction rates. The unreacted shrinking core model was applied to describe the sulfidation to determine the kinetic parameters.


2010 ◽  
Vol 150-151 ◽  
pp. 1500-1503 ◽  
Author(s):  
Hong Chi Zhao ◽  
Qi Li ◽  
Wen Yu Xu ◽  
Fan Huang

Polyvinylamine (PVAm) and polyvinylamine chloride (PVAm•HCl) were synthesized by Hofmann degradation of polyacrylamide (PAM). The reaction condition is gentle and the operation is safe, simple and economical so that it is a good reaction method. The chemical structures and thermal properties of the polymers were studied by Fourier transform infrared spectrometer (FTIR), nuclear magnetic resonance spectrometer (NMR), X-ray diffractmeter (XRD) and thermogravimetric analyzer (TGA). Synthesis of PVAm•HCl was confirmed by the intensities of the characteristic peak of -CONH2 decreased and the appearance of a new absorption peak at 1530cm-1 (due to N-H bond of -NH3+ ) in the FTIR spectrum, the appearance of the characteristic absorption peaks of carbon atoms in the 13C NMR spectrum, the appearance of chemical shift assignments of proton in 1H NMR spectrum and the appearance of characteristic dispersing diffraction peak between 22.5° to 25.2° in the XRD spectrum, respectively. PAM had three decomposing stages, but PVAm•HCl had two decomposing stages. TG curve of PAM and PVAm•HCl showed that the initial decomposition temperature were 190oC and 140oC, respectively. The thermal stability of PVAm•HCl was poorer than that of PAM.


Measurement ◽  
2011 ◽  
Vol 44 (10) ◽  
pp. 2096-2103 ◽  
Author(s):  
J.T. Devaraju ◽  
P.H. Suresha ◽  
Ramani ◽  
M.C. Radhakrishna

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1034
Author(s):  
Oladipo Folorunso ◽  
Yskandar Hamam ◽  
Rotimi Sadiku ◽  
Suprakas Sinha Ray ◽  
Neeraj Kumar

In this study, a hybrid of graphene nanoplatelets with a polypyrrole having 20 wt.% loading of carbon-black (HGPPy.CB20%), has been fabricated. The thermal stability, structural changes, morphology, and the electrical conductivity of the hybrids were investigated using thermogravimetric analyzer, differential scanning calorimeter, X-ray diffraction analyzer, scanning electron microscope, and laboratory electrical conductivity device. The morphology of the hybrid shows well dispersion of graphene nanoplatelets on the surface of the PPy.CB20% and the transformation of the gravel-like PPy.CB20% shape to compact spherical shape. Moreover, the hybrid’s electrical conductivity measurements showed percolation threshold at 0.15 wt.% of the graphene nanoplatelets content and the curve is non-linear. The electrical conductivity data were analyzed by comparing different existing models (Weber, Clingerman and Taherian). The results show that Taherian and Clingerman models, which consider the aspect ratio, roundness, wettability, filler electrical conductivity, surface interaction, and volume fractions, closely described the experimental data. From these results, it is evident that Taherian and Clingerman models can be modified for better prediction of the hybrids electrical conductivity measurements. In addition, this study shows that graphene nanoplatelets are essential and have a significant influence on the modification of PPy.CB20% for energy storage applications.


Sign in / Sign up

Export Citation Format

Share Document