Direct ink writing of Fe bone implants with independently adjustable structural porosity and mechanical properties

2022 ◽  
pp. 102589
Author(s):  
Chao Xu ◽  
Shengnan Yu ◽  
Wenzheng Wu ◽  
Qingping Liu ◽  
Luquan Ren
Author(s):  
John C. Steuben ◽  
Athanasios P. Iliopoulos ◽  
John G. Michopoulos

Additive Manufacturing (AM) encompasses a broad variety of fabrication techniques characterized by successive additions of mass and/or energy to a build domain. AM processes have been developed for a wide variety of feedstock materials, including metals, polymers, and ceramics. In the present work we study the AM of ceramics using the Direct Ink Writing (DIW) technique. We performed comparative studies between additively manufactured and conventionally manufactured test articles, in order to quantify the variations in output geometry and mechanical properties induced by the DIW process. Uniaxial tests are conducted using high-performance optical strain measurement techniques. In particular, it is shown that the DIW-produced specimens exhibit anisotropic shrinkage when fired, as well as a marked decrease in stiffness and ultimate strength. We conclude with a discussion of potential mechanisms which may be responsible for these property degradations, and introduce potential adaptations to the DIW AM process that may be effective in combating them.


2012 ◽  
Vol 510-511 ◽  
pp. 569-576
Author(s):  
M. Bilal ◽  
R.M. Gul ◽  
M. Mujahid ◽  
Z. Askar

Bone implants are widely used to treat patients due to trauma in different causalities. The major types of bone implants are plates known as Dynamic Compression Plates (DCP) and nails, both made of stainless steel (AISI 316L Grade). In Pakistan both local made and foreign made (DCP) are available. The unit price of foreign made DCP is about 8 to 10 times that of the local made, however, no comprehensive study has been done on the comparison of these plates. An in-depth analysis was performed to compare the essential properties of six different brands of DCP including two foreign, two local and two unknown brands. These properties included mechanical properties, such as bending stiffness, yield strength, modulus of elasticity and hardness. Compositional analysis and various dimensions of plate important for bone healing process were also compared. The results show that all plates have similar mechanical properties. The compositional analysis showed some variations from the ASTM standards for most of the plates. The dimensional analysis of plates showed that Slot Width and Land were within range for most of the plates but the Spherical Radius was out of range for all the plates. Generally, all plates have no major differences in their properties, material and shape.


2016 ◽  
Vol 67 ◽  
pp. 792-806 ◽  
Author(s):  
Feven Mattews Michael ◽  
Mohammad Khalid ◽  
Rashmi Walvekar ◽  
Chantara Thevy Ratnam ◽  
Suganti Ramarad ◽  
...  

2013 ◽  
Vol 430 ◽  
pp. 222-229 ◽  
Author(s):  
Oana Suciu ◽  
Teodora Ioanovici ◽  
Liviu Bereteu

Hydroxyapatite is a biomaterial, more exactly a bioceramic, from a category of materials frequently used in bone implants. In order to improve mechanical properties, hydroxyapatite is doped with different chemical substitutes, among which the most used are: Mg2*, Zn 2*, La3*, Y3*, In3* Bi3* CO32-, Si and Mn. In the paper are presented the modality of obtaining hydroxyapatite doped with magnesium through wet precipitation method and also the determination of its main mechanical characteristics. There is also an analysis on the effects of magnesium on the following mechanical properties: density, hardness, longitudinal modulus of elasticity, conductibility and thermal stability.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ma Qing ◽  
Teng Chong ◽  
Hu Jing ◽  
Baoan Sun

Fe-based amorphous alloy has excellent soft magnetic properties; traditionally, Fe-based amorphous alloy such as soft magnetic devices was fabricated by insulation enveloping and suppression molding methods. In this process, the aging of organic envelope materials and the crystallization of Fe-based amorphous alloy were usually occurring, accompanying with low magnetic induction and poor mechanical properties. The direct ink writing (DIW) technique can make complex-shaped parts and needs no heating treatment after forming, which can avoid the effect of traditional molding process. In the present study, varying mass fraction FeSiB/EP composite parts were prepared by the DIW technique with the Fe-based amorphous alloy powder and epoxy resin, in which microscopic morphology, magnetic properties, and mechanical properties of FeSiB/EP soft magnetic composites were studied. The results indicate that the slurry with iron powder mass fraction of 92.3, 92.6, and 92.8 wt% has good printing performance and self-support ability, which is suitable for DIW. The density of the printed parts is about 4.317, 4.449, and 4.537 g/cm3, which is almost similar with the iron powder. The tensile strength and elongation of printing parts are significantly improved compared with the pure epoxy resin. From the photos of microscopic morphology of printing parts, it can be seen that FeSiB powders are evenly dispersed in EP, no pores, and defects, with the proportion increasing of powders; the insulation coating thickness decreases; and the magnetic performance improves. The optimal sample is 92.8 wt% FeSiB/EP, in which saturation magnetic induction strength is 137.9759 emu/g and coercivity is 4.6523 A/m.


Author(s):  
Blake Herren ◽  
Tingting Gu ◽  
Qinggong Tang ◽  
Mrinal Saha ◽  
Yingtao Liu

Abstract The alignment of high aspect ratio reinforcing nanoparticles within a polymer matrix can have significant effects on the mechanical, electrical, and thermal properties of the nanocomposite. Therefore, in order to tailor the properties of the composite, it is imperative to develop novel methods to control the alignment of these filler particles in various polymeric matrices. This paper reports a unique approach to alter the alignment of carbon nanotubes (CNT) within polydimethylsiloxane (PDMS) nanocomposites using 3D printing technology. A line of the reinforced PDMS resin is printed on a PDMS substrate using direct ink writing technology, which can produce alignment in the print direction depending on printing parameters, the loading of the reinforcing particle, and the rheology of the ink. Then, the substrate is stretched and placed in an oven to cure the printed nanocomposites line with increased alignment in the stretch direction. These two techniques have the advantage of simplicity over other techniques and can efficiently manufacture nanocomposites with the alignment of nanoparticles. Optical microscopy will be used to quantify the alignment within the printed line. Electrical and mechanical properties will be tested to determine the effects of the different alignments within the elastomer. The ability to control the alignment of elastomeric CNT composites is advantageous for the growing field of polymer-based electronics.


2009 ◽  
Vol 1181 ◽  
Author(s):  
Shuilin Wu ◽  
Xiangmei Liu ◽  
Paul K Chu ◽  
Tao Hu ◽  
Kelvin Wai Kwok Yeung ◽  
...  

AbstractNear-equiatomic porous nickel-titanium shape memory alloys (NiTi SMAs) are becoming one of the most promising biomaterials in bone implants because of their unique advantages over currently used biomaterials. For example, they have good mechanical properties and lower Young�s modulus relative to dense NiTi, Ti, and Ti-based alloys. Porous NiTi SMAs are relatively easy to machine compared to porous ceramics such as hydroxyapatite and calcium phosphate that tend to exhibit brittle failure. The porous structure with interconnecting open pores can also allow tissue in-growth and favors bone osseointegration. In addition, porous NiTi alloys remain exhibiting good shape memory effect (SME) and superelasticity (SE) similar to dense NiTi alloys. To optimize porous NiTi SMAs in bone implant applications, the current research focuses on the fabrication methods and surface modification techniques in order to obtain adjustable bone-like structures with good mechanical properties, excellent superelasticity, as well as bioactive passivation on the entire exposed surface areas to block nickel ion leaching and enhance the surface biological activity. This invited paper describes progress in the fabrication of the porous materials and our recent work on surface nanorization of porous NiTi scaffolds in bone grafts applications.


Author(s):  
Kristopher Doll ◽  
Ani Ural

Hydroxyapatite (HA) has been proposed as a candidate material for bone implants because of its similarity to the inorganic phase in bone. However, due to its lower mechanical properties compared to bone, it has not been used in load bearing bone implants. Inclusion of second phase reinforcements in HA such as carbon nanotubes (CNT) and graphene nanosheets is expected to significantly improve its mechanical properties. In this study, a computational framework that will improve the understanding of the mechanical behavior of graphene nanosheet and CNT-reinforced HA-nanocomposites is proposed. The variation of elastic modulus of HA-nanocomposites is assessed based on the nanofiller type, volume fraction, alignment, area, thickness, and aspect ratio using the finite element modeling. The results of the simulations show that graphene nanosheets are more effective in improving the elastic modulus of nanocomposites than CNTs at similar volume fractions. HA-nanocomposites reinforced by graphene nanosheets exhibit transversely isotropic material properties and provide the highest elastic modulus when aligned along a direction or randomly distributed in a plane, whereas CNTs provide the best reinforcement when aligned along an axis. Variation in graphene nanosheet area, thickness, aspect ratio, and carbon nanotube length have negligible effect on elastic modulus of the HA-nanocomposite. In addition, comparison between the finite element simulations and theoretical calculations show that clustering of nanoinclusions reduces the effectiveness of the reinforcement they provide. The simulation results and the computational framework presented in this study are expected to help in determining the best design and manufacturing parameters that can be adapted for developing HA-nanocomposite bone implant materials.


2017 ◽  
Vol 909 ◽  
pp. 193-198
Author(s):  
Sivakoti Shyam Kumar ◽  
Rahul Chhibber ◽  
Rajeev Mehta

Bio-materials which would interact with human cells are chosen based on the issues of compatibility. The materials preferred in bone repair or replacements at load bearing sites require particular attention to strength and rigidity, which should match the native tissue. Any kind of mismatch between native bone and implant would lead to adverse results such as improper bone growth leading to reoperation. Further, the bone has varied mechanical properties at different sections and is anisotropic. Present work is a manifestation of Polyetheretherketone (PEEK) and Hydroxyapatite (HAp) bio-composite mechanical properties. The composites are prepared by mixing in a ball mill followed by compression moulding, sintering and heat treatment.


Sign in / Sign up

Export Citation Format

Share Document