scholarly journals Is adipose tissue responsible for cardiovascular disease in hypertensive and normotensive pregnant animal models?

2022 ◽  
Vol 226 (1) ◽  
pp. S639-S640
Author(s):  
Daniela Menichini ◽  
Lidia Di Cerbo ◽  
Ahmed R. Hamed ◽  
Corey Clifford ◽  
Fabio Facchinetti ◽  
...  
Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1412
Author(s):  
Katarzyna Piotrowska ◽  
Maciej Tarnowski

In recent years, adipose tissue has attracted a lot of attention. It is not only an energy reservoir but also plays important immune, paracrine and endocrine roles. BMAT (bone marrow adipose tissue) is a heterogeneous tissue, found mostly in the medullary canal of the long bones (tibia, femur and humerus), in the vertebrae and iliac crest. Adipogenesis in bone marrow cavities is a consequence of ageing or may accompany pathologies like diabetes mellitus type 1 (T1DM), T2DM, anorexia nervosa, oestrogen and growth hormone deficiencies or impaired haematopoiesis and osteoporosis. This paper focuses on studies concerning BMAT and its physiology in dietary interventions, like obesity in humans and high fat diet in rodent studies; and opposite: anorexia nervosa and calorie restriction in animal models.


2012 ◽  
Vol 302 (3) ◽  
pp. R321-R330 ◽  
Author(s):  
Ahmed A. Elmarakby

Cardiovascular disease (CVD) is the leading cause of mortality worldwide, and it is well known that end-stage renal disease (ESRD) is a profound consequence of the progression of CVD. Present treatments only slow CVD progression to ESRD, and it is imperative that new therapeutic strategies are developed to prevent the incidence of ESRD. Because epoxyeicosatrienoic acids (EETs) have been shown to elicit reno-protective effects in hypertensive animal models, the current review will focus on addressing the reno-protective mechanisms of EETs in CVD. The cytochrome P-450 epoxygenase catalyzes the oxidation of arachidonic acid to EETs. EETs have been identified as endothelium-derived hyperpolarizing factors (EDHFs) with vasodilatory, anti-inflammatory, antihypertensive, and antiplatelet aggregation properties. EETs also have profound effects on vascular migration and proliferation and promote angiogenesis. The progression of CVD has been linked to decreased EETs levels, leading to the concept that EETs should be therapeutically targeted to prevent end-organ damage associated with CVD. However, EETs are quickly degraded by the enzyme soluble epoxide hydrolase (sEH) to their less active diols, dihydroxyeicosatrienoic acids (DHETs). As such, one way to increase EETs level is to inhibit their degradation to DHETs by using sEH inhibitors. Inhibition of sEH has been shown to effectively reduce blood pressure and organ damage in experimental models of CVD. Another approach to target EETs is to develop EET analogs with improved solubility and resistance to auto-oxidation and metabolism by sEH. For example, stable ether EET analogs dilate afferent arterioles and lower blood pressure in hypertensive rodent animal models. EET agonists also improve insulin signaling and vascular function in animal models of metabolic syndrome.


Author(s):  
Preeti Sharma ◽  
Shailaza Shrestha ◽  
Pradeep Kumar ◽  
Saxena Sp ◽  
Rachna Sharma

ABSTRACTAmong the adipokines, adiponectin is the first one to be described just over a decade ago. It is produced exclusively by adipose tissue and circulatesin high concentration in human plasma accounting for 0.01% of proteins in plasma, almost thousand times higher than that of leptin. The normalcirculating level of adiponectin ranges from 2 to 30 µg/ml. It is now observed that besides adipose tissue, adiponectin can also be produced byseveral other tissues such as hepatocytes, cardiomyocytes, and placenta. Adiponectin executes its action via autocrine as well as and paracrine effects.Researchers working in this area have revealed that adiponectin has insulin-sensitizing, anti-inflammatory and cardioprotective effects. Our reviewfocuses on adiponectin, its mode of action on different peripheral tissues such as skeletal muscles, heart, liver, brain and its the correlative accountin various diseases.Keywords: Adiponectin, Obesity, Type 2 diabetes, Inflammation, Malignancies, Cardiovascular disease.


2009 ◽  
Vol 94 (1) ◽  
pp. 261-267 ◽  
Author(s):  
A. R. Baker ◽  
A. L. Harte ◽  
N. Howell ◽  
D. C. Pritlove ◽  
A. M. Ranasinghe ◽  
...  

Abstract Context: Visceral adipose tissue (AT) is known to confer a significantly higher risk of type 2 diabetes and cardiovascular disease. Epicardial AT has been shown to be related to cardiovascular disease and myocardial function through unidentified mechanisms. Epicardial AT expresses an inflammatory profile of proteins; however, the mechanisms responsible are yet to be elucidated. Objectives: The objectives of the study were to: 1) examine key mediators of the nuclear factor-κB (NFκB) and c-Jun N-terminal kinase (JNK) pathways in paired epicardial and gluteofemoral (thigh) AT from coronary artery disease (CAD) and control patients and 2) investigate circulating endotoxin levels in CAD and control subjects. Design: Serums and AT biopsies (epicardial and thigh) were obtained from CAD (n = 16) and non-CAD (n = 18) patients. Inflammation was assessed in tissue and serum samples through Western blot, real-time PCR, ELISAs, and activity studies. Results: Western blotting showed epicardial AT had significantly higher NFκB, inhibitory-κB kinase (IKK)-γ, IKKβ, and JNK-1 and -2 compared with thigh AT. Epicardial mRNA data showed strong correlations between CD-68 and toll-like receptor-2, toll-like receptor-4, and TNF-α. Circulating endotoxin was elevated in patients with CAD compared with matched controls [CAD: 6.80 ± 0.28 endotoxin unit(EU)/ml vs. controls: 5.52 ± 0.57 EU/ml; P<0.05]. Conclusion: Epicardial AT from patients with CAD shows increased NFκB, IKKβ, and JNK expression compared with both CAD thigh AT and non-CAD epicardial AT, suggesting a depot-specific as well as a disease-linked response to inflammation. These studies implicate both NFκB and JNK pathways in the inflammatory profile of epicardial AT and highlight the role of the macrophage in the inflammation within this tissue.


Sign in / Sign up

Export Citation Format

Share Document