Efficacy of guanidinoacetic acid at different dietary crude protein levels on growth performance, stress indicators, antioxidant status, and intestinal morphology in broiler chickens subjected to cyclic heat stress

2019 ◽  
Vol 254 ◽  
pp. 114208 ◽  
Author(s):  
Masoumeh Amiri ◽  
Hossein Ali Ghasemi ◽  
Iman Hajkhodadadi ◽  
Amir Hossein Khaltabadi Farahani
1993 ◽  
Vol 70 (3) ◽  
pp. 667-678 ◽  
Author(s):  
R. W. Rosebrough ◽  
J. P. McMurtry

Male broiler chickens growing from 7 to 35d were fed on a diet containing 150g crude protein (N × 6·25)/kg diet supplemented with lysine to equal that in diets containing 166, 183 and 200g crude protein/kg diet (Expt 1). A second group of male broiler chickens growing over the same period were fed on a diet containing 120g crude protein/kg supplemented with lysine, arginine, tryptophan, threonine and isoleucine equal to that in diets containing 144, 172 and 200g crude protein/kg diet (Expt 2). Growth was improved by lysine supplementation but not to the level attained by feeding 200g crude protein/kg (Expt 1). Lysine, arginine, tryptophan, threonine and isoleucine supplementation of a low-protein diet also improved growth, but growth again fell short of that attained by feeding a diet containing 200g crude protein/kg. Plasma insulin-like growth factor-1 and thyroxine concentrations increased and triiodothyronine decreased as the crude protein level increased from 150 to 200g/kg diet. Supplemental lysine did not affect plasma levels of these hormones. Although dietary crude protein levels noticeably changed rates ofin vitrolipogenesis, changing either the level of a single limiting amino acid or the levels of several limiting amino acids did not change lipogenesis.


2021 ◽  
Vol 8 ◽  
Author(s):  
Chang Yin ◽  
Bing Xia ◽  
Shanlong Tang ◽  
Aizhi Cao ◽  
Lei Liu ◽  
...  

Bile acids are critical for lipid absorption, however, their new roles in maintaining or regulating systemic metabolism are irreplaceable. The negative impacts of heat stress (HS) on growth performance, lipid metabolism, and antioxidant status have been reported, but it remains unknown whether the bile acids (BA) composition of broiler chickens can be affected by HS. Therefore, this study aimed to investigate the modulating effects of the environment (HS) and whether dietary BA supplementation can benefit heat-stressed broiler chickens. A total of 216 Arbor Acres broilers were selected with a bodyweight approach average and treated with thermal neutral (TN), HS (32°C), or HS-BA (200 mg/kg BA supplementation) from 21 to 42 days. The results showed that an increase in average daily gain (P < 0.05) while GSH-Px activities (P < 0.05) in both serum and liver were restored to the normal range were observed in the HS-BA group. HS caused a drop in the primary BA (P = 0.084, 38.46%) and Tauro-conjugated BA (33.49%) in the ileum, meanwhile, the secondary BA in the liver and cecum were lower by 36.88 and 39.45% respectively. Notably, results were consistent that SBA levels were significantly increased in the serum (3-fold, P = 0.0003) and the ileum (24.89-fold, P < 0.0001). Among them, TUDCA levels (P < 0.01) were included. Besides, BA supplementation indeed increased significantly TUDCA (P = 0.0154) and THDCA (P = 0.0003) levels in the liver, while ileal TDCA (P = 0.0307), TLCA (P = 0.0453), HDCA (P = 0.0018), and THDCA (P = 0.0002) levels were also increased. Intestinal morphology of ileum was observed by hematoxylin and eosin (H&E) staining, birds fed with BA supplementation reduced (P = 0.0431) crypt depth, and the ratio of villous height to crypt depth trended higher (P = 0.0539) under the heat exposure. Quantitative RT-PCR showed that dietary supplementation with BA resulted in upregulation of FXR (P = 0.0369), ASBT (P = 0.0154), and Keap-1 (P = 0.0104) while downregulation of iNOS (P = 0.0399) expression in ileum. Moreover, 16S rRNA gene sequencing analysis and relevance networks revealed that HS-derived changes in gut microbiota and BA metabolites of broilers may affect their resistance to HS. Thus, BA supplementation can benefit broiler chickens during high ambient temperatures, serving as a new nutritional strategy against heat stress.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 364
Author(s):  
Emrah Gungor ◽  
Aydin Altop ◽  
Guray Erener

The effects of raw (GP) and fermented grape pomace (FGP) on the growth performance, some carcass parameters, antioxidant status, intestinal morphology, and selected bacterial species in broiler chicken were investigated in this study. Grape pomace was fermented with Aspergillus niger for 7 d. In total, 140 one-day-old male chicks (Ross 308) were randomly assigned to four treatment groups, with five replicates and seven birds each. Chickens were fed either a basal diet (CON) or the basal diet supplemented with 0.25 g/kg synthetic antioxidants (5% butylated hydroxytoluene, 1% butylated hydroxyanisole, and 11% ethoxyquin) (AO), or 15 g/kg GP (GP), or 15 g/kg FGP (FGP) for 42 d. Dietary GP raised serum glutathione peroxidase (p = 0.031) and superoxide dismutase (p = 0.021) levels, increased ileum lamina muscularis thickness (p = 0.016), and did not affect selected bacterial species in the cecum of broiler chickens. Dietary FGP improved body weight (p = 0.003), increased the serum catalase level (p = 0.032), and decreased the cecal Clostridium perfringens count (p = 0.033) but did not affect the ileal morphology of broiler chickens. The carcass parameters, malondialdehyde level, pH, and color of the breast meat of chickens were not changed by either GP or FGP supplementation. Chickens fed with the synthetic antioxidants had similar growth performance with the chickens fed with FGP but had better body weight (p = 0.003) and feed conversion ratio (p = 0.045) compared with the chickens fed with GP. The obtained results showed that FGP can be used as an alternative to synthetic antioxidants in broiler diets.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260285
Author(s):  
Shemil P. Macelline ◽  
Peter V. Chrystal ◽  
Shiva Greenhalgh ◽  
Mehdi Toghyani ◽  
Peter H. Selle ◽  
...  

The objective of this study was to investigate the impacts of dietary crude protein (CP), fishmeal and sorghum on nutrient utilisation, digestibility coefficients and disappearance rates of starch and protein, amino acid concentrations in systemic plasma and their relevance to growth performance of broiler chickens using the Box-Behnken response surface design. The design consisted of three factors at three levels including dietary CP (190, 210, 230 g/kg), fishmeal (0, 50, 100 g/kg), and sorghum (0, 150, 300 g/kg). A total of 390 male, off-sex Ross 308 chicks were offered experimental diets from 14 to 35 days post-hatch. Growth performance, nutrient utilisation, starch and protein digestibilities and plasma free amino acids were determined. Dietary CP had a negative linear impact on weight gain where the transition from 230 to 190 g/kg CP increased weight gain by 9.43% (1835 versus 2008 g/bird, P = 0.006). Moreover, dietary CP linearly depressed feed intake (r = -0.486. P < 0.001). Fishmeal inclusions had negative linear impacts on weight gain (r = -0.751, P < 0.001) and feed intake (r = -0.495, P < 0.001). There was an interaction between dietary CP and fishmeal for FCR. However, growth performance was not influenced by dietary inclusions of sorghum. Total plasma amino acid concentrations were negatively related to weight gain (r = -0.519, P < 0.0001). The dietary transition from 0 to 100 g/kg fishmeal increased total amino acid concentrations in systemic plasma by 35% (771 versus 1037 μg/mL, P < 0.001). It may be deduced that optimal weight gain (2157 g/bird), optimal feed intake (3330 g/bird) and minimal FCR (1.544) were found in birds offered 190 g/kg CP diets without fishmeal inclusion, irrespective of sorghum inclusions. Both fishmeal and sorghum inclusions did not alter protein and starch digestion rate in broiler chickens; however, moderate reductions in dietary CP could advantage broiler growth performance.


Sign in / Sign up

Export Citation Format

Share Document