Analysis of the parameters affecting energy consumption of a rotary kiln in cement industry

2014 ◽  
Vol 66 (1-2) ◽  
pp. 435-444 ◽  
Author(s):  
Adem Atmaca ◽  
Recep Yumrutaş
2021 ◽  
Vol 13 (7) ◽  
pp. 3810
Author(s):  
Alessandra Cantini ◽  
Leonardo Leoni ◽  
Filippo De Carlo ◽  
Marcello Salvio ◽  
Chiara Martini ◽  
...  

The cement industry is highly energy-intensive, consuming approximately 7% of global industrial energy consumption each year. Improving production technology is a good strategy to reduce the energy needs of a cement plant. The market offers a wide variety of alternative solutions; besides, the literature already provides reviews of opportunities to improve energy efficiency in a cement plant. However, the technology is constantly developing, so the available alternatives may change within a few years. To keep the knowledge updated, investigating the current attractiveness of each solution is pivotal to analyze real companies. This article aims at describing the recent application in the Italian cement industry and the future perspectives of technologies. A sample of plant was investigated through the analysis of mandatory energy audit considering the type of interventions they have recently implemented, or they intend to implement. The outcome is a descriptive analysis, useful for companies willing to improve their sustainability. Results prove that solutions to reduce the energy consumption of auxiliary systems such as compressors, engines, and pumps are currently the most attractive opportunities. Moreover, the results prove that consulting sector experts enables the collection of updated ideas for improving technologies, thus giving valuable inputs to the scientific research.


2008 ◽  
Vol 58 ◽  
pp. 83-89
Author(s):  
Ning Chang Liu ◽  
Zhao Feng Li

In cement industry, many grinding up systems are on operating now. The tradition process of tube mill grinding system is high energy consumption, so it’s low efficiency, especially in the final cement grinding process. The value and advantage of slag is recognized more and more, but it’s difficult to be grinded up. Furthermore, the disadvantage and shortages to grind up clinker compounded with slag to produce cement are obvious and adopted. The best process is to grind up slag, clinker separately. Then, these two kinds of powder are compounded by a mixer. Hereby, it introduces a design of the process to grind up clinker, slag by one roller mill.


2015 ◽  
Vol 787 ◽  
pp. 142-146
Author(s):  
Siva Teja Chopperla ◽  
Rajeswari Jupalli ◽  
Deepak Kanraj ◽  
A. Bahurudeen ◽  
M.K. Haneefa ◽  
...  

The consumption of Portland cement for the production of concrete is rapidly increasing because of the remarkable growth in the construction worldwide. Cement production is an energy intensive process. The energy consumption by the cement industry is estimated to be about 5% of the total global industrial energy consumption. Manufacturing process of cement consumes enormous quantities of raw materials from limited natural resources at a high rate and leads to their depletion. Due to the dominant use of carbon intensive fuels such as coal, the cement industry is a major emitter of carbon dioxide and other air pollutants. The cement industry contributes about 6 % of global carbon dioxide emissions which is the primary source of global warming. In addition to carbon dioxide emissions, significant amount of nitrogen oxides, sulphur dioxide, carbon monoxide, hydrocarbons and volatile organic compounds are emitted during cement manufacturing and causes severe environmental issues. In this regard, effective control techniques for reduction in carbon dioxide emissions from modern cement industry and an efficient procedure to achieve sustainable cement manufacturing process are discussed in this paper.


2021 ◽  
Vol 20 (4) ◽  
pp. 209-214
Author(s):  
Polaiah Bojja ◽  
N. Merrin Prasanna ◽  
Pamula Raja Kumari ◽  
T. Bhuvanendhiran ◽  
Panuganti Jayanth Kumar

In the cement factories, a rotary kiln is a pyro-processing device that is used to raise the temperature of the materials in a continuous process. Temperature monitoring is an essential process in the rotary kiln to yield high quality clinker and it has been implemented using various image processing techniques. In this paper we are measuring and controlling the temperature of rotational kiln in cement industry to get proper clinker ouput. Burning zone flame images are captured using CCD(Charge Coupled Device) camera and are processed using image processing with PID(Proportion Integration and Derivative) controller and which are programmed on raspberry pi card with the help of python language, also the captured images and attributes are transferred to authorized mobile/pc through Raspberry PI by selecting the IP address of mobile or PC. All the attributes received in the mobile in the form of web page the according to the object following data temperature controlled and object is ceaselessly followed to get the proper clinker output. Picture handling calculation with Open cv, as indicated by the calculation the edge estimation of the camera is settled. The frame value of the camera is set. Conversion from RGB color space to HSV color space is achieved and the reference color threshold value is determined. The range esteem estimated by the camera is contrasted and the reference esteem. In this study temp of rotational kiln is measured effectively using PID controller, this controller continuously control the temperature of revolving kiln by varying the i/p images of burning zone at finally fix one flame which is giving 1400degc.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 559 ◽  
Author(s):  
Mari Voldsund ◽  
Stefania Gardarsdottir ◽  
Edoardo De Lena ◽  
José-Francisco Pérez-Calvo ◽  
Armin Jamali ◽  
...  

A technical evaluation of CO2 capture technologies when retrofitted to a cement plant is performed. The investigated technologies are the oxyfuel process, the chilled ammonia process, membrane-assisted CO2 liquefaction, and the calcium looping process with tail-end and integrated configurations. For comparison, absorption with monoethanolamine (MEA) is used as reference technology. The focus of the evaluation is on emission abatement, energy performance, and retrofitability. All the investigated technologies perform better than the reference both in terms of emission abatement and energy consumption. The equivalent CO2 avoided are 73–90%, while it is 64% for MEA, considering the average EU-28 electricity mix. The specific primary energy consumption for CO2 avoided is 1.63–4.07 MJ/kg CO2, compared to 7.08 MJ/kg CO2 for MEA. The calcium looping technologies have the highest emission abatement potential, while the oxyfuel process has the best energy performance. When it comes to retrofitability, the post-combustion technologies show significant advantages compared to the oxyfuel and to the integrated calcium looping technologies. Furthermore, the performance of the individual technologies shows strong dependencies on site-specific and plant-specific factors. Therefore, rather than identifying one single best technology, it is emphasized that CO2 capture in the cement industry should be performed with a portfolio of capture technologies, where the preferred choice for each specific plant depends on local factors.


Sign in / Sign up

Export Citation Format

Share Document