Improving salt stress responses of the symbiosis in alfalfa using salt-tolerant cultivar and rhizobial strain

2015 ◽  
Vol 87 ◽  
pp. 108-117 ◽  
Author(s):  
Annick Bertrand ◽  
Catherine Dhont ◽  
Marie Bipfubusa ◽  
François-P. Chalifour ◽  
Pascal Drouin ◽  
...  
Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1227
Author(s):  
Ali Mahmoud El-Badri ◽  
Maria Batool ◽  
Ibrahim A. A. Mohamed ◽  
Zongkai Wang ◽  
Ahmed Khatab ◽  
...  

Measuring metabolite patterns and antioxidant ability is vital to understanding the physiological and molecular responses of plants under salinity. A morphological analysis of five rapeseed cultivars showed that Yangyou 9 and Zhongshuang 11 were the most salt-tolerant and -sensitive, respectively. In Yangyou 9, the reactive oxygen species (ROS) level and malondialdehyde (MDA) content were minimized by the activation of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) for scavenging of over-accumulated ROS under salinity stress. Furthermore, Yangyou 9 showed a significantly higher positive correlation with photosynthetic pigments, osmolyte accumulation, and an adjusted Na+/K+ ratio to improve salt tolerance compared to Zhongshuang 11. Out of 332 compounds identified in the metabolic profile, 225 metabolites were filtrated according to p < 0.05, and 47 metabolites responded to salt stress within tolerant and sensitive cultivars during the studied time, whereas 16 and 9 metabolic compounds accumulated during 12 and 24 h, respectively, in Yangyou 9 after being sown in salt treatment, including fatty acids, amino acids, and flavonoids. These metabolites are relevant to metabolic pathways (amino acid, sucrose, flavonoid metabolism, and tricarboxylic acid cycle (TCA), which accumulated as a response to salinity stress. Thus, Yangyou 9, as a tolerant cultivar, showed improved antioxidant enzyme activity and higher metabolite accumulation, which enhances its tolerance against salinity. This work aids in elucidating the essential cellular metabolic changes in response to salt stress in rapeseed cultivars during seed germination. Meanwhile, the identified metabolites can act as biomarkers to characterize plant performance in breeding programs under salt stress. This comprehensive study of the metabolomics and antioxidant activities of Brassica napus L. during the early seedling stage is of great reference value for plant breeders to develop salt-tolerant rapeseed cultivars.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xiaoyu Yang ◽  
Bo Song ◽  
Jie Cui ◽  
Lina Wang ◽  
Shuoshuo Wang ◽  
...  

Abstract Background Soil salinization represents a serious threat to global rice production. Although significant research has been conducted to understand salt stress at the genomic, transcriptomic and proteomic levels, few studies have focused on the translatomic responses to this stress. Recent studies have suggested that transcriptional and translational responses to salt stress can often operate independently. Results We sequenced RNA and ribosome-protected fragments (RPFs) from the salt-sensitive rice (O. sativa L.) cultivar ‘Nipponbare’ (NB) and the salt-tolerant cultivar ‘Sea Rice 86’ (SR86) under normal and salt stress conditions. A large discordance between salt-induced transcriptomic and translatomic alterations was found in both cultivars, with more translationally regulated genes being observed in SR86 in comparison to NB. A biased ribosome occupancy, wherein RPF depth gradually increased from the 5′ ends to the 3′ ends of coding regions, was revealed in NB and SR86. This pattern was strengthened by salt stress, particularly in SR86. On the contrary, the strength of ribosome stalling was accelerated in salt-stressed NB but decreased in SR86. Conclusions This study revealed that translational reprogramming represents an important layer of salt stress responses in rice, and the salt-tolerant cultivar SR86 adopts a more flexible translationally adaptive strategy to cope with salt stress compared to the salt susceptible cultivar NB. The differences in translational dynamics between NB and SR86 may derive from their differing levels of ribosome stalling under salt stress.


Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 742
Author(s):  
Nopphawitchayaphong Khrueasan ◽  
Panita Chutimanukul ◽  
Kitiporn Plaimas ◽  
Teerapong Buaboocha ◽  
Meechai Siangliw ◽  
...  

‘KDML105’ rice, known as jasmine rice, is grown in northeast Thailand. The soil there has high salinity, which leads to low productivity. Chromosome substitution lines (CSSLs) with the ‘KDML105’ rice genetic background were evaluated for salt tolerance. CSSL18 showed the highest salt tolerance among the four lines tested. Based on a comparison between the CSSL18 and ‘KDML105’ transcriptomes, more than 27,000 genes were mapped onto the rice genome. Gene ontology enrichment of the significantly differentially expressed genes (DEGs) revealed that different mechanisms were involved in the salt stress responses between these lines. Biological process and molecular function enrichment analysis of the DEGs from both lines revealed differences in the two-component signal transduction system, involving LOC_Os04g23890, which encodes phototropin 2 (PHOT2), and LOC_Os07g44330, which encodes pyruvate dehydrogenase kinase (PDK), the enzyme that inhibits pyruvate dehydrogenase in respiration. OsPHOT2 expression was maintained in CSSL18 under salt stress, whereas it was significantly decreased in ‘KDML105’, suggesting OsPHOT2 signaling may be involved in salt tolerance in CSSL18. PDK expression was induced only in ‘KDML105’. These results suggested respiration was more inhibited in ‘KDML105’ than in CSSL18, and this may contribute to the higher salt susceptibility of ‘KDML105’ rice. Moreover, the DEGs between ‘KDML105’ and CSSL18 revealed the enrichment in transcription factors and signaling proteins located on salt-tolerant quantitative trait loci (QTLs) on chromosome 1. Two of them, OsIRO2 and OsMSR2, showed the potential to be involved in salt stress response, especially, OsMSR2, whose orthologous genes in Arabidopsis had the potential role in photosynthesis adaptation under salt stress.


Plant Science ◽  
2017 ◽  
Vol 264 ◽  
pp. 188-198 ◽  
Author(s):  
Sylva Prerostova ◽  
Petre I. Dobrev ◽  
Alena Gaudinova ◽  
Petr Hosek ◽  
Petr Soudek ◽  
...  

2013 ◽  
Vol 138 (5) ◽  
pp. 350-357 ◽  
Author(s):  
Tao Hu ◽  
Haiying Yi ◽  
Longxing Hu ◽  
Jinmin Fu

Plants possess abiotic stress responses that alter photosynthetic metabolism under salinity stress. The objective of this study was to identify the stomatal and metabolic changes associated with photosynthetic responses to NaCl stress in perennial ryegrass (Lolium perenne). Five-week-old seedlings of two perennial ryegrass genotypes, PI 516605 (salt-sensitive) and BARLP 4317 (salt-tolerant), were subjected to 0 and 250 mm NaCl for 8 days. The salt tolerance in perennial ryegrass was significantly associated with leaf relative water content (RWC) and photosynthetic capacity through the maintenance of greater metabolic activities under prolonged salt stress. BARLP 4317 maintained greater turf quality, RWC, and stomatal limitations but a lower level of lipid peroxidation [malondialdehyde (MDA)] and intercellular CO2 concentration than PI 516605 at 8 days after treatment (DAT). Ribulose-1, 5-bisphosphate carboxylase:oxygenase (Rubisco) activity and activation state, transcriptional level of rbcL gene, and expression level of Rubisco large subunit (LSU) declined in stressed perennial ryegrass but were higher in salt-tolerant genotype at 8 DAT. Furthermore, photosynthetic rate increased linearly with increasing Rubisco activity, Rubisco activation state, and RWC in both genotypes. The same linear relationship was found between RWC and Rubisco activity. However, MDA content decreased linearly with increasing RWC in both genotypes. Salinity-induced inhibition of photosynthesis in perennial ryegrass was mainly the result of stomatal limitation during early salt stress and metabolic limitation associated with the inhibition of RWC, activity of Rubisco, expression level of rbcL gene, and LSU under a prolonged period of severe salinity.


HortScience ◽  
1997 ◽  
Vol 32 (2) ◽  
pp. 296-300 ◽  
Author(s):  
M.R. Foolad ◽  
G.Y. Lin

Seed of 42 wild accessions (Plant Introductions) of Lycopersicon pimpinellifolium Jusl., 11 cultigens (cultivated accessions) of L. esculentum Mill., and three control genotypes [LA716 (a salt-tolerant wild accession of L. pennellii Corr.), PI 174263 (a salt-tolerant cultigen), and UCT5 (a salt-sensitive breeding line)] were evaluated for germination in either 0 mm (control) or 100 mm synthetic sea salt (SSS, Na+/Ca2+ molar ratio equal to 5). Germination time increased in response to salt-stress in all genotypes, however, genotypic variation was observed. One accession of L. pimpinellifolium, LA1578, germinated as rapidly as LA716, and both germinated more rapidly than any other genotype under salt-stress. Ten accessions of L. pimpinellifolium germinated more rapidly than PI 174263 and 35 accessions germinated more rapidly than UCT5 under salt-stress. The results indicate a strong genetic potential for salt tolerance during germination within L. pimpinellifolium. Across genotypes, germination under salt-stress was positively correlated (r = 0.62, P < 0.01) with germination in the control treatment. The stability of germination response at diverse salt-stress levels was determined by evaluating germination of a subset of wild, cultivated accessions and the three control genotypes at 75, 150, and 200 mm SSS. Seeds that germinated rapidly at 75 mm also germinated rapidly at 150 mm salt. A strong correlation (r = 0.90, P < 0.01) existed between the speed of germination at these two salt-stress levels. At 200 mm salt, most accessions (76%) did not reach 50% germination by 38 days, demonstrating limited genetic potential within Lycopersicon for salt tolerance during germination at this high salinity.


Rice ◽  
2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Xiang Zhang ◽  
Yan Long ◽  
Jingjing Huang ◽  
Jixing Xia

Abstract Background Salt stress threatens crop yields all over the world. Many NAC transcription factors have been reported to be involved in different abiotic stress responses, but it remains unclear how loss of these transcription factors alters the transcriptomes of plants. Previous reports have demonstrated that overexpression of OsNAC45 enhances salt and drought tolerance in rice, and that OsNAC45 may regulate the expression of two specific genes, OsPM1 and OsLEA3–1. Results Here, we found that ABA repressed, and NaCl promoted, the expression of OsNAC45 in roots. Immunostaining showed that OsNAC45 was localized in all root cells and was mainly expressed in the stele. Loss of OsNAC45 decreased the sensitivity of rice plants to ABA and over-expressing this gene had the opposite effect, which demonstrated that OsNAC45 played an important role during ABA signal responses. Knockout of OsNAC45 also resulted in more ROS accumulation in roots and increased sensitivity of rice to salt stress. Transcriptome sequencing assay found that thousands of genes were differently expressed in OsNAC45-knockout plants. Most of the down-regulated genes participated in plant stress responses. Quantitative real time RT-PCR suggested that seven genes may be regulated by OsNAC45 including OsCYP89G1, OsDREB1F, OsEREBP2, OsERF104, OsPM1, OsSAMDC2, and OsSIK1. Conclusions These results indicate that OsNAC45 plays vital roles in ABA signal responses and salt tolerance in rice. Further characterization of this gene may help us understand ABA signal pathway and breed rice plants that are more tolerant to salt stress.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 547
Author(s):  
Arafat Abdel Hamed Abdel Latef ◽  
Md. Tahjib-Ul-Arif ◽  
Mohammad Saidur Rhaman

Auxin not only controls the development processes, but also regulates the stress responses of plants. In this investigation, we explored the potential roles of exogenously applied indole-3-acetic acid (IAA) in conferring salt tolerance in the faba bean (Vicia faba L.). Our results showed that foliar application of IAA (200 ppm) to salt-exposed (60 mM and 150 mM NaCl) plants promoted growth, which was evidenced by enhanced root–stem traits. IAA application ensured better osmotic protection in salt-stressed plants which was supported by reduced proline and enhanced soluble sugar, soluble protein, and total free amino acid contents in the roots, stem, and seeds. IAA application also increased the number of nodules in salt-stressed plants, which may facilitate better nitrogen assimilation. Moreover, IAA mediated improvements in mineral homeostasis (K+, Ca2+, and Mg2+) and the translocation of Na+, while it also inhibited excessive accumulation of Na+ in the roots. Salt-induced oxidative damage resulted in increased accumulation of malondialdehyde, whereas IAA spraying relegated malondialdehyde by improving antioxidant enzymes, including superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase. Together, these results together with a principal component analysis uncovered that foliar spraying of IAA alleviated the antagonistic effects of salt stress via enhancing osmolyte accumulation, ionic homeostasis, and antioxidant activity. Finally, exogenous IAA enhanced the yield of broad beans under high salinity conditions.


Sign in / Sign up

Export Citation Format

Share Document