Variations in Aluminum Particle Surface Energy and Reactivity Induced by Annealing and Quenching

2021 ◽  
pp. 152185
Author(s):  
Alan Williams ◽  
Igor Altman ◽  
Daniel Burnett ◽  
Ezequiel Gutierrez Zorrilla ◽  
Armando R. Garcia ◽  
...  
2002 ◽  
Vol 16 (17n18) ◽  
pp. 2529-2535
Author(s):  
R. Tao ◽  
X. Xu ◽  
Y. C. Lan

When a strong electric field is applied to a suspension of micron-sized high T c superconducting particles in liquid nitrogen, the particles quickly aggregate together to form millimeter-size balls. The balls are sturdy, surviving constant heavy collisions with the electrodes, while they hold over 106 particles each. The phenomenon is a result of interaction between Cooper pairs and the strong electric field. The strong electric field induces surface charges on the particle surface. When the applied electric field is strong enough, Cooper pairs near the surface are depleted, leading to a positive surface energy. The minimization of this surface energy leads to the aggregation of particles to form balls.


2008 ◽  
Vol 181 (2) ◽  
pp. 160-168 ◽  
Author(s):  
Frank Thielmann ◽  
Majid Naderi ◽  
Mansoor A. Ansari ◽  
Frantisek Stepanek

2013 ◽  
Vol 1505 ◽  
Author(s):  
Lihong Su ◽  
Xiaowei Yin ◽  
Caixia Wan ◽  
Shengru Qiao

ABSTRACTThe surface energy quantifies the disruption of intermolecular bond that occurs when a surface is created. The paper discusses critical size dc of mono-dispersed nanometer particle by analyzing the change of interfacial surface energy. The traditional theory neglects that the mono-dispersed nanometer particle has quantum standing wave in its internal structure with a size below critical dc. During the preparation of mono-dispersed nanometer powder, the large surface energy is formed ont only by cutting surface bond but also by forming quantum standing wave that opposites to interfacial edge unsaturated bond on the nanometer partcile surface atom. The preparation process of nanometer material needs more energy than the size surpass dc material. The new theory can explain why the melting point of nanometer powder decreases and other phenomina of nanometer material.


Author(s):  
Kai Zheng ◽  
Kuriakose Kunnath ◽  
Rajesh Dave

The effects of processing intensity, time and particle surface energy on mixing of binary cohesive blends (size ratio 1:2, fine concentration at 10 %) in high intensity vibration system were investigated via DEM simulations. Results show that both increasing processing intensity from 50 to 100 Gs and reducing surface energy from 50 to 0.5 J/m2 lead to a faster mixing rate. Mixing Bond number (〖Bo〗_m) was introduced to capture the effective mixing rate, Rm; higher 〖Bo〗_m corresponding to lower mixing rate. The coefficient of variation, Cv, formed the basis for the mixing quality and Rm, while the mixing action is quantified by the product of Rm and mixing time (Pr,t). Simulation results show that Cv values drop initially, and then rise with Pr,t. Hence, low Pr,t indicates inadequate mixing intensity, while high Pr,t most likely indicates mixture segregation, and therefore too high or too low Pr,t values should be avoided.


2019 ◽  
Vol 8 (1) ◽  
pp. 503-512 ◽  
Author(s):  
Lubomír Lapčík ◽  
Martin Vašina ◽  
Barbora Lapčíková ◽  
David Hui ◽  
Eva Otyepková ◽  
...  

Abstract Four different minerals were investigated; hollow spheres of calcium carbonate, platy mica, needle like wollastonite and glassy perlite and characterized via iGC for surface energy, Freeman powder rheology for flow characterization, cyclic uniaxial die compaction for modulus of elasticity and frequency dependent sound absorption properties. Particle surface energy and particle shape strongly affected the packing density of powder beds. In the case of higher porosity and thus lower bulk density, the powders acoustic absorption was higher in comparison with higher packing density materials. Surface energy profiles and surface energy distributions revealed clear convergence with powder rheology data, where the character of the powder flow at defined consolidation stresses was mirroring either the high cohesion powders properties connected with the high surface energy or powder free flowing characteristics, as reflected in low cohesion of the powder matrix.


MRS Advances ◽  
2016 ◽  
Vol 1 (10) ◽  
pp. 621-630
Author(s):  
Shayandev Sinha ◽  
Siddhartha Das

AbstractThe Shuttleworth effect ensures that at an interface, where one of the phases is an elastic solid, surface stress is not equal to the surface energy. In this paper, we provide a free energy based approach to quantify the impact of the Shuttleworth effect in the adhesion of a rigid, spherical particle on an elastic solid. Our paper has four key findings. Firstly, we demonstrate that the difference in the elastic-solid-particle surface stress and surface energies is linearly proportional to the adhesion energy. Secondly, we establish that the surface stresses being larger than the surface energies provide the sufficient condition for an energetically favorable adhesion. Thirdly, we show that for a given adhesion energy and solid-vapor surface energy increase in particle-vapor surface energy makes the adhesion, in presence of the Shuttleworth effect, more favorable. Finally, and most importantly, we identify the necessary parameter space corresponding to which the Shuttleworth effect may or may not enhance the adhesion as compared to the case that does not account for the Shuttleworth effect. We anticipate that our findings will significantly impact our understanding of a plethora of problems involving adhesion and indentation on soft surfaces, such as nanoparticle adhesion on cells, nanoindentation based characterization of soft solids, applications of adhesion-based soft lithography techniques, etc.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2386 ◽  
Author(s):  
Jose Muñiz-Lerma ◽  
Amy Nommeots-Nomm ◽  
Kristian Waters ◽  
Mathieu Brochu

In powder bed fusion additive manufacturing, the powder feedstock quality is of paramount importance; as the process relies on thin layers of powder being spread and selectively melted to manufacture 3D metallic components. Conventional powder quality assessments for additive manufacturing are limited to particle morphology, particle size distribution, apparent density and flowability. However, recent studies are highlighting that these techniques may not be the most appropriate. The problem is exacerbated when studying aluminium powders as their complex cohesive behaviors dictate their flowability. The current study compares the properties of three different AlSi7Mg powders, and aims to obtain insights about the minimum required properties for acceptable powder feedstock. In addition to conventional powder characterization assessments, the powder spread density, moisture sorption, surface energy, work of cohesion, and powder rheology, were studied. This work has shown that the presence of fine particles intensifies the pick-up of moisture increasing the total particle surface energy as well as the inter-particle cohesion. This effect hinders powder flow and hence, the spreading of uniform layers needed for optimum printing. When spherical particles larger than 48 µm with a narrow particle distribution are present, the moisture sorption as well as the surface energy and cohesion characteristics are decreased enhancing powder spreadability. This result suggest that by manipulating particle distribution, size and morphology, challenging powder feedstock such as Al, can be optimized for powder bed fusion additive manufacturing.


2008 ◽  
Vol 389-390 ◽  
pp. 475-480
Author(s):  
Dong Ming Guo ◽  
Rui Hong Liu ◽  
Ren Ke Kang ◽  
Zhu Ji Jin

In the process of CMP SiO2 ILD, the nano-particle with high surface energy in slurry has an essential impact on the efficiency and quality of CMP. In this paper the mode of nano-particle on the surface of SiO2 ILD is analysed and adhesion removal model corresponding to that is established. Through cycle polishing experiments, the change of nano-particle size and the state of particle surface before and after polishing is observed with TEM and Zeta potential analyzer, based on which the adhesion removal model is verified.


Sign in / Sign up

Export Citation Format

Share Document