ALCAPs induce mitochondrial apoptosis and activate DNA damage response by generating ROS and inhibiting topoisomerase I enzyme activity in K562 leukemia cell line

2011 ◽  
Vol 409 (4) ◽  
pp. 738-744 ◽  
Author(s):  
Nuray Bogurcu ◽  
Canan Sevimli-Gur ◽  
Besra Ozmen ◽  
Erdal Bedir ◽  
Kemal Sami Korkmaz
NAR Cancer ◽  
2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Luisa Statello ◽  
Mohamad M Ali ◽  
Silke Reischl ◽  
Sagar Mahale ◽  
Subazini Thankaswamy Kosalai ◽  
...  

Abstract Despite the rapid improvements in unveiling the importance of lncRNAs in all aspects of cancer biology, there is still a void in mechanistic understanding of their role in the DNA damage response. Here we explored the potential role of the oncogenic lncRNA SCAT7 (ELF3-AS1) in the maintenance of genome integrity. We show that SCAT7 is upregulated in response to DNA-damaging drugs like cisplatin and camptothecin, where SCAT7 expression is required to promote cell survival. SCAT7 silencing leads to decreased proliferation of cisplatin-resistant cells in vitro and in vivo through interfering with cell cycle checkpoints and DNA repair molecular pathways. SCAT7 regulates ATR signaling, promoting homologous recombination. Importantly, SCAT7 also takes part in proteasome-mediated topoisomerase I (TOP1) degradation, and its depletion causes an accumulation of TOP1–cc structures responsible for the high levels of intrinsic DNA damage. Thus, our data demonstrate that SCAT7 is an important constituent of the DNA damage response pathway and serves as a potential therapeutic target for hard-to-treat drug resistant cancers.


2014 ◽  
Vol 9 (1) ◽  
pp. 169-176 ◽  
Author(s):  
YANG JIAO ◽  
CHANG LIU ◽  
FENG-MEI CUI ◽  
JIA-YING XU ◽  
JIAN TONG ◽  
...  

1992 ◽  
Vol 139 (2) ◽  
pp. 531-540 ◽  
Author(s):  
Mária Kávai ◽  
Róza Ádány ◽  
Gabriella Pásti ◽  
Péter Surányi ◽  
Gabriella Szücs ◽  
...  

1991 ◽  
Vol 11 (11) ◽  
pp. 5462-5469 ◽  
Author(s):  
P D Aplan ◽  
D P Lombardi ◽  
I R Kirsch

The SIL (SCL interrupting locus) gene was initially discovered at the site of a genomic rearrangement in a T-cell acute lymphoblastic leukemia cell line. This rearrangement, which occurs in a remarkably site-specific fashion, is present in the leukemic cells of 16 to 26% of patients with T-cell acute lymphoblastic leukemia. We have now cloned a normal SIL cDNA from a cell line which does not carry the rearrangement. The SIL cDNA has a long open reading frame of 1,287 amino acids, with a predicted molecular size of 143 kDa. The predicted protein is not homologous with any previously described protein; however, a potential eukaryotic topoisomerase I active site was identified. Cross-species hybridization using a SIL cDNA probe indicated that the SIL gene was conserved in mammals. A survey of human and murine cell lines and tissues demonstrated SIL mRNA to be ubiquitously expressed, at low levels, in hematopoietic cell lines and tissues. With the exception of 11.5-day-old mouse embryos, SIL mRNA was not detected in nonhematopoietic tissues. The genomic structure of SIL was also analyzed. The gene consists of 18 exons distributed over 70 kb, with the 5' portion of the gene demonstrating alternate exon utilization.


2017 ◽  
Vol 108 (8) ◽  
pp. 1556-1564 ◽  
Author(s):  
Kenichi Tahara ◽  
Makiko Takizawa ◽  
Arito Yamane ◽  
Yohei Osaki ◽  
Takuma Ishizaki ◽  
...  

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1514-1514
Author(s):  
Jie Li ◽  
Fukun Guo ◽  
Jared Sipple ◽  
Sara Kozma ◽  
George Thomas ◽  
...  

Abstract Abstract 1514 The mammalian target of rapamycin (mTOR) is a key regulator of nutrient metabolism, cell growth and proliferation. Inhibition of mTOR signaling by rapamycin or rapamycin in combination with antineoplastic agents has been shown to block cancer cell proliferation and cancer angiogenesis. Second-generation pharmacological mTOR inhibitors, which inhibit both mTORC1 and mTORC2 by directly targeting the ATP-binding site of mTOR, have recently shown improved activity in tumor suppression and are under clinical development for cancer therapy. Indeed, it is found that the mTOR kinase inhibitor PP242 inhibits cell proliferation more effectively than rapamycin in pre-clinical models, suggesting the additive contributions of mTORC1 and mTORC2 to cancer cell proliferation and survival. In the present study, we have explored the therapeutic value of PP242 in sensitizing tumor suppression by anti-cancer drugs. We found that the combination of PP242 with Cytarabine (AraC) or Etoposide induced significant higher apoptosis than single-agent treatment in several human lymphoma and leukemia cell lines including K562, Molt-Luc2, and K562-Luc2. Specifically, using Molt-Luc2 cells, the percentages of apoptosis for combined PP242-AraC and PP242-Etoposide treatments were 76.3±4.2% and 78.2+5.9%, respectively, in comparison with 52.7±6.3% and 38.2±4.5%, respectively, in AraC- and Etoposide-treated cells; the basal level of apoptosis in these leukemic cells was 5–8%. Further, PP242, but not Rapamycin, sensitized the leukemia and lymphoma cells to DNA damage induced by AraC or Etoposide, evidenced by a marked increase in g-H2AX foci (94±5% cells in PP242-AraC group vs 25±3% cells in AraC-alone group or 98±4% cells in PP242- Etoposide group vs 36±3% cells in Etoposide-alone group), as well as DNA-strand breaks (comet-tailed value of 25.4±1.2% in PP242-AraC group and 31.2±3.2% in PP242-Etoposide group compared to 9.8±1.2% in AraC-alone and 11.4±2.8% Etoposide-alone groups, respectively). This increased DNA damage response can be attributed to a suppression of the expression of FANCD2, a critical DNA damage repair component of the Fanconi pathway, by PP242, in both normal lymphoblasts and leukemic cells. Significantly, the effect of PP242 on Fanconi gene expression was FANCD2-specific as PP242 had no effect on the expression of other Fanconi proteins such as FANCA and FANCC, and forced expression of FANCD2 by a viral promoter completely abolished the sensitizing effect of PP242 on drug-induced leukemia cell death. We are currently using a mouse xenotransplant model to explore the in vivo effect of the combination of PP242 with AraC for human leukemia cells. Our findings suggest that the mTOR kinase inhibitor PP242 enhances antitumor activity of conventional chemo-drugs by suppressing FANCD2 and associated DNA damage response and consequently augmenting DNA damage leading to apoptosis. Therefore, PP242 combined with chemotherapy could represent a novel strategy for the treatment of hematopoietic malignancies. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 432 (23) ◽  
pp. 6108-6126
Author(s):  
Suqing Wang ◽  
Dharanidharan Ramamurthy ◽  
Jasper Tan ◽  
Jingyan Liu ◽  
Joyce Yip ◽  
...  

2004 ◽  
Vol 24 (12) ◽  
pp. 5332-5339 ◽  
Author(s):  
Ann M. Buchmann ◽  
Jeffrey R. Skaar ◽  
James A. DeCaprio

ABSTRACT Although the link between transcription and DNA repair is well established, defects in the core transcriptional complex itself have not been shown to elicit a DNA damage response. Here we show that a cell line with a temperature-sensitive defect in TBP-associated factor 1 (TAF1), a component of the TFIID general transcription complex, exhibits hallmarks of an ATR-mediated DNA damage response. Upon inactivation of TAF1, ATR rapidly localized to subnuclear foci and contributed to the phosphorylation of several downstream targets, including p53 and Chk1, resulting in cell cycle arrest. The increase in p53 expression and the G1 phase arrest could be blocked by caffeine, an inhibitor of ATR. In addition, dominant negative forms of ATR but not ATM were able to override the arrest in G1. These results suggest that a defect in TAF1 can elicit a DNA damage response.


Sign in / Sign up

Export Citation Format

Share Document