GSK-3β inhibition elicits a neuroprotection by restoring lysosomal dysfunction in neurons via facilitation of TFEB nuclear translocation after ischemic stroke

2021 ◽  
pp. 147768
Author(s):  
Zhang Yongjie ◽  
Wu Zhiyuan ◽  
Huang Zhiwen ◽  
Liu Yuyuan ◽  
Chen Xuemei ◽  
...  
2021 ◽  
Vol 22 (1) ◽  
pp. 434
Author(s):  
Yuria Jang ◽  
Hong Moon Sohn ◽  
Young Jong Ko ◽  
Hoon Hyun ◽  
Wonbong Lim

Background: Recently, it was reported that leucine-rich repeat-containing G-protein-coupled receptor 4 (LGR4, also called GPR48) is another receptor for RANKL and was shown to compete with RANK to bind RANKL and suppress canonical RANK signaling during osteoclast differentiation. The critical role of the protein triad RANK–RANKL in osteoclastogenesis has made their binding an important target for the development of drugs against osteoporosis. In this study, point-mutations were introduced in the RANKL protein based on the crystal structure of the RANKL complex and its counterpart receptor RANK, and we investigated whether LGR4 signaling in the absence of the RANK signal could lead to the inhibition of osteoclastogenesis.; Methods: The effects of point-mutated RANKL (mRANKL-MT) on osteoclastogenesis were assessed by tartrate-resistant acid phosphatase (TRAP), resorption pit formation, quantitative real-time polymerase chain reaction (qPCR), western blot, NFATc1 nuclear translocation, micro-CT and histomorphological assay in wild type RANKL (mRANKL-WT)-induced in vitro and in vivo experimental mice model. Results: As a proof of concept, treatment with the mutant RANKL led to the stimulation of GSK-3β phosphorylation, as well as the inhibition of NFATc1 translocation, mRNA expression of TRAP and OSCAR, TRAP activity, and bone resorption, in RANKL-induced mouse models; and Conclusions: The results of our study demonstrate that the mutant RANKL can be used as a therapeutic agent for osteoporosis by inhibiting RANKL-induced osteoclastogenesis via comparative inhibition of RANKL. Moreover, the mutant RANKL was found to lack the toxic side effects of most osteoporosis treatments.


2020 ◽  
Author(s):  
Yanlian Xiong ◽  
Yueming Wang ◽  
Jiashen Zhang ◽  
Nannan Zhao ◽  
Hengchao Zhang ◽  
...  

Abstract Background: Mesenchymal stem cells (MSCs) was considered as regenerative therapeutic approach in both acute and chronic diseases. However, whether MSCs regulate the antioxidant metabolism of CD4+ T cells and weaken immunosenescence remains unclear. Here, we reported the protective effects of hPMSCs in aging-related CD4+ T cell senescence and identified the underlying mechanisms using a D-gal induced mouse aging model.Methods: In vivo study, 40 male C57BL/6 mice (8 weeks) were randomly divided into four groups: control group, D-gal group, hPMSC group and PBS group. In in vitro experiment, human naive CD4+ T (CD4CD45RA) cells were prepared using a naive CD4+ T cell isolation kit II and pretreated with the Akt inhibitor LY294002 and Nrf2 inhibitor ML385. Then, isolated naive CD4+ T cell were cocultured with hPMSCs for 72 h in the absence or presence of anti-CD3/CD28 Dynabeads and IL-2 as a mitogenic stimulus. Intracellular ROS changes were detected by flow cytometry. The activities of the antioxidant enzymes superoxide dismutase, glutathione peroxidase and catalase were measured by colorimetric analysis. The senescent T cells were detected SA-β-gal stain. The expression of aging related proteins were detected by Western blotting, RT-PCR and confocal microscopy.Results: We found that hPMSC treatment markedly decreased the ROS level, SA-β-gal positive cells number, senescence-associated secretory phenotype (IL-6 and OPN) expression and aging-related protein (P16 and P21) expression in senescent CD4+ T cells. Furthermore, hPMSC treatment effectively upregulated Nrf2 nuclear translocation and the expression of downstream target genes (HO-1, CAT, GCLC and NQO1) in senescent CD4+ T cells. Moreover, in vitro studies revealed that hPMSCs attenuated CD4+ T cell senescence by upregulating the Akt/GSK-3β/Fyn pathway to activate Nrf2 functions. Conversely, the antioxidant effects of hPMSCs were blocked by the Akt inhibitor LY294002 and Nrf2 inhibitor ML385 in senescent CD4+ T cells.Conclusions: Our results indicate that hPMSCs attenuate D-gal induced CD4+ T cell senescence by activating Nrf2-mediated antioxidant defenses and that upregulation of Nrf2 by hPMSCs is regulated via the Akt/GSK-3β/Fyn pathway.


2018 ◽  
Vol 62 (6) ◽  
pp. e02045-17 ◽  
Author(s):  
Chia-Ling Chen ◽  
Miao-Huei Cheng ◽  
Chih-Feng Kuo ◽  
Yi-Lin Cheng ◽  
Ming-Han Li ◽  
...  

ABSTRACTGroup AStreptococcus(GAS) is an important human pathogen that causes a wide spectrum of diseases, including necrotizing fasciitis and streptococcal toxic shock syndrome. Dextromethorphan (DM), an antitussive drug, has been demonstrated to efficiently reduce inflammatory responses, thereby contributing to an increased survival rate of GAS-infected mice. However, the anti-inflammatory mechanisms underlying DM treatment in GAS infection remain unclear. DM is known to exert neuroprotective effects through an NADPH oxidase-dependent regulated process. In the present study, membrane translocation of NADPH oxidase subunit p47phoxand subsequent reactive oxygen species (ROS) generation induced by GAS infection were significantly inhibited via DM treatment in RAW264.7 murine macrophage cells. Further determination of proinflammatory mediators revealed that DM effectively suppressed inducible nitric oxide synthase (iNOS) expression and NO, tumor necrosis factor alpha, and interleukin-6 generation in GAS-infected RAW264.7 cells as well as in air-pouch-infiltrating cells from GAS/DM-treated mice. GAS infection caused AKT dephosphorylation, glycogen synthase kinase-3β (GSK-3β) activation, and subsequent NF-κB nuclear translocation, which were also markedly inhibited by treatment with DM and an NADPH oxidase inhibitor, diphenylene iodonium. These results suggest that DM attenuates GAS infection-induced overactive inflammation by inhibiting NADPH oxidase-mediated ROS production that leads to downregulation of the GSK-3β/NF-κB/NO signaling pathway.


2018 ◽  
Vol 48 (1) ◽  
pp. 42-53 ◽  
Author(s):  
Qingqing Wang ◽  
Chengmei Lv ◽  
Yongxin Sun ◽  
Xu Han ◽  
Shan Wang ◽  
...  

Background/Aims: Ischemic stroke results in increased cerebral infarction, neurological deficits and neuroinflammation. The underlying mechanisms involving the anti-inflammatory and neuroprotective properties of α-Lipoic acid (α-LA) remain poorly understood. Herein, we investigated the potential role of α-LA in a middle cerebral artery occlusion (MCAO) rat model and an in vitro lipopolysaccharide (LPS)-induced microglia inflammation model. Methods: In the in vivo study, infarct volume was examined by TTC staining and Garcia score was used to evaluate neurologic recovery. The cytokines were evaluated by enzyme-linked immunosorbent assay, and protein expression of microglia phenotype and NF-κB were measured using western blot. In the in vitro study, the expressions of microglia M1/M2 phenotype were evaluated using qRT-PCR, and immunofluorescence staining was used to assess the nuclear translocation of NF-κB. Results: Both 20 mg/kg and 40 mg/kg of α-LA alleviated infarct size, brain edema, and neurological deficits. Furthermore, α-LA induced the polarization of microglia to the M2 phenotype, modulated the expression of IL-1β, IL-6, TNF-α and IL-10, and attenuated the activation of NF-κB after MCAO. α-LA inhibited the expression of M1 markers, increased activation of the M2 markers, and suppressed the nuclear translocation of NF-κB in LPS-stimulated BV2 microglia. Conclusions: α-LA improved neurological outcome in experimental stroke via modulating microglia M1/M2 polarization. The potential mechanism of α-LA might be mediated by inhibition of NF-κB activation via regulating phosphorylation and nuclear translocation of p65.


2019 ◽  
Vol 97 (6) ◽  
pp. 702-708 ◽  
Author(s):  
Ting Wang ◽  
Yu-Mei Duan ◽  
Qiao Fu ◽  
Tao Liu ◽  
Jin-Cheng Yu ◽  
...  

Hemorrhagic transformation (HT) is a devastating complication for patients with acute ischemic stroke (AIS) who are treated with tissue plasminogen activator (tPA). HT is associated with high morbidity and mortality, but no effective treatments are currently available to reduce the risk of HT. Therefore, methods to prevent HT are urgently needed. In this study, we used IM-12, an inhibitor of glycogen synthase kinase 3β (GSK-3β), to evaluate the role of the Wnt–β-catenin signaling pathway in recombinant tPA (rtPA)-induced HT. Sprague–Dawley rats were subjected to a middle cerebral artery occlusion (MCAO) model of ischemic stroke, and then were either administered rtPA, rtPA combined with IM-12, or the vehicle at 4 h after stroke was induced. Our results indicate that rats subjected to HT had more severe neurological deficits, brain edema, and blood–brain barrier (BBB) breakdown, and had a greater infarction volume than the control group. Rats treated with IM-12 had improved outcomes compared with those of rats treated with rtPA alone. Moreover, IM-12 increased the protein expression of β-catenin and downstream proteins while suppressing the expression of GSK-3β. These results suggest that IM-12 reduces rtPA-induced HT and attenuates BBB disruption, possibly through activation of the Wnt–β-catenin signaling pathway, and provides a potential therapeutic strategy for preventing tPA-induced HT after AIS.


Blood ◽  
2019 ◽  
Vol 134 (2) ◽  
pp. 134-146 ◽  
Author(s):  
Nicole Freise ◽  
Alina Burghard ◽  
Theresa Ortkras ◽  
Niklas Daber ◽  
Achmet Imam Chasan ◽  
...  

Abstract The inflammatory responsiveness of phagocytes to exogenous and endogenous stimuli is tightly regulated. This regulation plays an important role in systemic inflammatory response syndromes (SIRSs). In SIRSs, phagocytes initially develop a hyperinflammatory response, followed by a secondary state of hyporesponsiveness, a so-called “tolerance.” This hyporesponsiveness can be induced by endotoxin stimulation of Toll-like receptor 4 (TLR4), resulting in an ameliorated response after subsequent restimulation. This modification of inflammatory response patterns has been described as innate immune memory. Interestingly, tolerance can also be triggered by endogenous TLR4 ligands, such as the alarmins myeloid-related protein 8 (MRP8, S100A8) and MRP14 (S100A9), under sterile conditions. However, signaling pathways that trigger hyporesponsiveness of phagocytes in clinically relevant diseases are only barely understood. Through our work, we have now identified 2 main signaling cascades that are activated during MRP-induced tolerance of phagocytes. We demonstrate that the phosphatidylinositol 3-kinase/AKT/GSK-3β pathway interferes with NF-κB–driven gene expression and that inhibition of GSK-3β mimics tolerance in vivo. Moreover, we identified interleukin-10–triggered activation of transcription factors STAT3 and BCL-3 as master regulators of MRP-induced tolerance. Accordingly, patients with dominant-negative STAT3 mutations show no tolerance development. In a clinically relevant condition of systemic sterile stress, cardiopulmonary bypass surgery, we confirmed the initial induction of MRP expression and the tolerance induction of monocytes associated with nuclear translocation of STAT3 and BCL-3 as relevant mechanisms. Our data indicate that the use of pharmacological JAK-STAT inhibitors may be promising targets for future therapeutic approaches to prevent complications associated with secondary hyporesponsiveness during SIRS.


2020 ◽  
Author(s):  
Yanlian Xiong ◽  
Yueming Wang ◽  
Jiashen Zhang ◽  
Nannan Zhao ◽  
Aiping Zhang ◽  
...  

Abstract Background: Mesenchymal stem cells (MSCs) was considered as regenerative therapeutic approach in both acute and chronic diseases. However, whether MSCs regulate the antioxidant metabolism of CD4+ T cells and weaken immunosenescence remains unclear. Here, we reported the protective effects of hPMSCs in aging-related CD4+ T cell senescence and identified the underlying mechanisms using a D-gal induced mouse aging model.Methods: In vivo study, 40 male C57BL/6 mice (8 weeks) were randomly divided into four groups: control group, D-gal group, hPMSC group and PBS group. In in vitro experiment, human naive CD4+ T (CD4CD45RA) cells were prepared using a naive CD4+ T cell isolation kit II and pretreated with the Akt inhibitor LY294002 and Nrf2 inhibitor ML385. Then, isolated naive CD4+ T cell were cocultured with hPMSCs for 72 h in the absence or presence of anti-CD3/CD28 Dynabeads and IL-2 as a mitogenic stimulus. Intracellular ROS changes were detected by flow cytometry. The activities of the antioxidant enzymes superoxide dismutase, glutathione peroxidase and catalase were measured by colorimetric analysis. The senescent T cells were detected SA-β-gal stain. The expression of aging related proteins were detected by Western blotting, RT-PCR and confocal microscopy.Results: We found that hPMSC treatment markedly decreased the ROS level, SA-β-gal positive cells number, senescence-associated secretory phenotype (IL-6 and OPN) expression and aging-related protein (P16 and P21) expression in senescent CD4+ T cells. Furthermore, hPMSC treatment effectively upregulated Nrf2 nuclear translocation and the expression of downstream target genes (HO-1, CAT, GCLC and NQO1) in senescent CD4+ T cells. Moreover, in vitro studies revealed that hPMSCs attenuated CD4+ T cell senescence by upregulating the Akt/GSK-3β/Fyn pathway to activate Nrf2 functions. Conversely, the antioxidant effects of hPMSCs were blocked by the Akt inhibitor LY294002 and Nrf2 inhibitor ML385 in senescent CD4+ T cells.Conclusions: Our results indicate that hPMSCs attenuate D-gal induced CD4+ T cell senescence by activating Nrf2-mediated antioxidant defenses and that upregulation of Nrf2 by hPMSCs is regulated via the Akt/GSK-3β/Fyn pathway.


Biomedicines ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 479
Author(s):  
Venkata Viswanadh Edara ◽  
Shruthi Nooka ◽  
Jessica Proulx ◽  
Satomi Stacy ◽  
Anuja Ghorpade ◽  
...  

Reactive astrogliosis is prominent in most neurodegenerative disorders and is often associated with neuroinflammation. The molecular mechanisms regulating astrocyte-linked neuropathogenesis during injury, aging and human immunodeficiency virus (HIV)-associated neurocognitive disorders (HAND) are not fully understood. In this study, we investigated the implications of the wingless type (Wnt)/β-catenin signaling pathway in regulating astrocyte function during gliosis. First, we identified that HIV-associated inflammatory cytokines, interleukin (IL)-1β and tumor necrosis factor (TNF)-α induced mediators of the Wnt/β-catenin pathway including β-catenin and lymphoid enhancer-binding factor (LEF)-1 expression in astrocytes. Next, we investigated the regulatory role of β-catenin on primary aspects of reactive astrogliosis, including proliferation, migration and proinflammatory responses, such as IL-6. Knockdown of β-catenin impaired astrocyte proliferation and migration as shown by reduced cyclin-D1 levels, bromodeoxyuridine incorporation and wound healing. HIV-associated cytokines, IL-1β alone and in combination with TNF-α, strongly induced the expression of proinflammatory cytokines including C-C motif chemokine ligand (CCL)2, C-X-C motif chemokine ligand (CXCL)8 and IL-6; however, only IL-6 levels were regulated by β-catenin as demonstrated by knockdown and pharmacological stabilization. In this context, IL-6 levels were negatively regulated by β-catenin. To better understand this relationship, we examined the crossroads between β-catenin and nuclear factor (NF)-κB pathways. While NF-κB expression was significantly increased by IL-1β and TNF-α, NF-κB levels were not affected by β-catenin knockdown. IL-1β treatment significantly increased glycogen synthase kinase (GSK)-3β phosphorylation, which inhibits β-catenin degradation. Further, pharmacological inhibition of GSK-3β increased nuclear translocation of both β-catenin and NF-κB p65 into the nucleus in the absence of any other inflammatory stimuli. HIV+ human astrocytes show increased IL-6, β-catenin and NF-κB expression levels and are interconnected by regulatory associations during HAND. In summary, our study demonstrates that HIV-associated inflammation increases β-catenin pathway mediators to augment activated astrocyte responses including migration and proliferation, while mitigating IL-6 expression. These findings suggest that β-catenin plays an anti-inflammatory role in activated human astrocytes during neuroinflammatory pathologies, such as HAND.


2020 ◽  
Vol 9 (4) ◽  
pp. 996
Author(s):  
Chih-Hsuan Hsia ◽  
Thanasekaran Jayakumar ◽  
Joen-Rong Sheu ◽  
Chih-Wei Hsia ◽  
Wei-Chieh Huang ◽  
...  

Activated microglia are crucial in the regulation of neuronal homeostasis and neuroinflammation. They also contribute to neuropathological processes after ischemic stroke. Thus, finding new approaches for reducing neuroinflammation has gained considerable attention. The metal ruthenium has gained notable attention because of its ability to form new complexes that can be used in disease treatment. [Ru(η6-cymene)2-(1H-benzoimidazol-2-yl)-quinoline Cl]BF4 (TQ-6), a potent ruthenium (II)-derived compound, was used in this study to investigate its neuroprotective action against microglia activation, middle cerebral artery occlusion (MCAO)-induced embolic stroke, and platelet activation, respectively. TQ-6 (2 μM) potently diminished inflammatory mediators (nitric oxide/inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2)) expression, nuclear factor kappa B (NF-κB) p65 phosphorylation, nuclear translocation, and hydroxyl radical (OH•) formation in LPS-stimulated microglia. Conversely, TQ-6 increased the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). Moreover, it significantly reduced brain infarct volume and edema in MCAO mice. Additionally, it drastically inhibited platelet aggregation and OH• production in mice platelets. This study confirmed that TQ-6 exerts an anti-neuroinflammatory effect on microglia activation through neuroprotection, antiplatelet activation, and free radical scavenging. The authors propose that TQ-6 might mitigate neurodegenerative pathology by inhibiting the NF-κB-mediated downstream pathway (iNOS and COX-2) and enhancing Nrf2/HO-1 signaling molecules in microglia.


Sign in / Sign up

Export Citation Format

Share Document