Arrangement of cellulose microfibrils in the wheat straw cell wall

2008 ◽  
Vol 72 (1) ◽  
pp. 122-127 ◽  
Author(s):  
Hui Yu ◽  
Ruigang Liu ◽  
Dawa Shen ◽  
Zhonghua Wu ◽  
Yong Huang
Holzforschung ◽  
2020 ◽  
Vol 74 (12) ◽  
pp. 1157-1167
Author(s):  
Elena M. Ben’ko ◽  
Dmitriy G. Chukhchin ◽  
Valeriy V. Lunin

AbstractTreatment of plant biomass with ozone is a promising delignification method. It was shown that lignin removal from the cell wall during ozonation was limited by topochemical reactions and toke place in the secondary rather in the primary cell wall. The separation of cellulose microfibrils, the loss of cell wall stiffness and complete removal of intercellular substance during the delignification process were visualized by SEM. The dependence of the average diameter of the cellulose microfibril aggregates in the cell wall of ozonized straw on ozone consumption was studied. Lignin removal caused an increase of size of cellulose microfibrils aggregates. It was demonstrated that there was an optimal degree of delignification, at which cellulose became more accessible to enzymes in the subsequent bioconversion processes. The data on the ozone consumption, residual lignin content, and sugars yield in the enzymatic hydrolysis of ozonized wheat straw were obtained. It was also found that the optimum delignification degree for sugars yield was ≈10% of residual lignin content and optimum ozone consumption was 2 mol·О3/mol C9PPU (phenylpropane structural unit) of lignin in raw straw.


1957 ◽  
Vol 3 (2) ◽  
pp. 171-182 ◽  
Author(s):  
S. T. Bayley ◽  
J. R. Colvin ◽  
F. P. Cooper ◽  
Cecily A. Martin-Smith

The primary walls of epidermal cells in Avena coleoptiles ranging in length from 2 to 40 mm. have been studied in the electron and polarizing microscopes and by the low-angle scattering of x-rays. The outer walls of these cells are composed of multiple layers of cellulose microfibrils oriented longitudinally; initially the number of layers is between 10 and 15 but this increases to about 25 in older tissue. Where epidermal cells touch, these multiple layers fuse gradually into a primary wall of the normal type between cells. In these radial walls, the microfibrils are oriented transversely. Possible mechanisms for the growth of the multilayered outer wall during cell elongation are discussed.


Plants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 805
Author(s):  
Pablo Ric-Varas ◽  
Marta Barceló ◽  
Juan A. Rivera ◽  
Sergio Cerezo ◽  
Antonio J. Matas ◽  
...  

Cell cultures derived from strawberry fruit at different developmental stages have been obtained to evaluate their potential use to study different aspects of strawberry ripening. Callus from leaf and cortical tissue of unripe-green, white, and mature-red strawberry fruits were induced in a medium supplemented with 11.3 µM 2,4-dichlorophenoxyacetic acid (2,4-D) under darkness. The transfer of the established callus from darkness to light induced the production of anthocyanin. The replacement of 2,4-D by abscisic acid (ABA) noticeably increased anthocyanin accumulation in green-fruit callus. Cell walls were isolated from the different fruit cell lines and from fruit receptacles at equivalent developmental stages and sequentially fractionated to obtain fractions enriched in soluble pectins, ester bound pectins, xyloglucans (XG), and matrix glycans tightly associated with cellulose microfibrils. These fractions were analyzed by cell wall carbohydrate microarrays. In fruit receptacle samples, pectins were abundant in all fractions, including those enriched in matrix glycans. The amount of pectin increased from green to white stage, and later these carbohydrates were solubilized in red fruit. Apparently, XG content was similar in white and red fruit, but the proportion of galactosylated XG increased in red fruit. Cell wall fractions from callus cultures were enriched in extensin and displayed a minor amount of pectins. Stronger signals of extensin Abs were detected in sodium carbonate fraction, suggesting that these proteins could be linked to pectins. Overall, the results obtained suggest that fruit cell lines could be used to analyze hormonal regulation of color development in strawberry but that the cell wall remodeling process associated with fruit softening might be masked by the high presence of extensin in callus cultures.


2019 ◽  
Vol 60 (7) ◽  
pp. 1487-1503 ◽  
Author(s):  
Thiel A. Lehman ◽  
Karen A Sanguinet

AbstractPlant cells sheath themselves in a complex lattice of polysaccharides, proteins and enzymes forming an integral matrix known as the cell wall. Cellulose microfibrils, the primary component of cell walls, are synthesized at the plasma membrane by CELLULOSE SYNTHASE A (CESA) proteins throughout cellular growth and are responsible for turgor-driven anisotropic expansion. Associations between hormone signaling and cell wall biosynthesis have long been suggested, but recently direct links have been found revealing hormones play key regulatory roles in cellulose biosynthesis. The radially swollen 1 (rsw1) allele of Arabidopsis thaliana CESA1 harbors a single amino acid change that renders the protein unstable at high temperatures. We used the conditional nature of rsw1 to investigate how auxin contributes to isotropic growth. We found that exogenous auxin treatment reduces isotropic swelling in rsw1 roots at the restrictive temperature of 30�C. We also discovered decreases in auxin influx between rsw1 and wild-type roots via confocal imaging of AUX1-YFP, even at the permissive temperature of 19�C. Moreover, rsw1 displayed mis-expression of auxin-responsive and CESA genes. Additionally, we found altered auxin maxima in rsw1 mutant roots at the onset of swelling using DII-VENUS and DR5:vYFP auxin reporters. Overall, we conclude disrupted cell wall biosynthesis perturbs auxin transport leading to altered auxin homeostasis impacting both anisotropic and isotropic growth that affects overall root morphology.


2020 ◽  
Vol 71 (10) ◽  
pp. 2982-2994 ◽  
Author(s):  
Xiaoran Xin ◽  
Lei Lei ◽  
Yunzhen Zheng ◽  
Tian Zhang ◽  
Sai Venkatesh Pingali ◽  
...  

Abstract Auxin-induced cell elongation relies in part on the acidification of the cell wall, a process known as acid growth that presumably triggers expansin-mediated wall loosening via altered interactions between cellulose microfibrils. Cellulose microfibrils are a major determinant for anisotropic growth and they provide the scaffold for cell wall assembly. Little is known about how acid growth depends on cell wall architecture. To explore the relationship between acid growth-mediated cell elongation and plant cell wall architecture, two mutants (jia1-1 and csi1-3) that are defective in cellulose biosynthesis and cellulose microfibril organization were analyzed. The study revealed that cell elongation is dependent on CSI1-mediated cell wall architecture but not on the overall crystalline cellulose content. We observed a correlation between loss of crossed-polylamellate walls and loss of auxin- and fusicoccin-induced cell growth in csi1-3. Furthermore, induced loss of crossed-polylamellate walls via disruption of cortical microtubules mimics the effect of csi1 in acid growth. We hypothesize that CSI1- and microtubule-dependent crossed-polylamellate walls are required for acid growth in Arabidopsis hypocotyls.


IAWA Journal ◽  
2014 ◽  
Vol 35 (2) ◽  
pp. 127-137 ◽  
Author(s):  
Shengcheng Zhai ◽  
Yoshiki Horikawa ◽  
Tomoya Imai ◽  
Junji Sugiyama

The cell wall organization of leaf sheath fibers in different palm species was studied with polarized light microscopy (PLM) and transmission electron microscopy (TEM). The secondary wall of the fibers consisted of only two layers, S1 and S2. The thickness of the S1 layer in leaf sheath fibers from the different palm species ranged from 0.31 to 0.90 μm, with a mean value of 0.57 μm, which was thicker than that of tracheids and fibers in secondary xylem of conifers and dicotyledons. The thickness of the S2 layer ranged from 0.44 to 3.43 μm, with a mean value of 1.86 μm. The ratio of S1 thickness to the whole cell wall thickness in palm fibers appears to be higher than in secondary xylem fibers and tracheids. The lignin in the fiber walls is very electron dense which makes it difficult to obtain high contrast of the different layers in the secondary wall. To clarify the cell wall layering with cellulose microfibrils in different orientations, the fibrovascular bundles of the windmill palm (Trachycarpus fortunei) were delignified with different reaction time intervals. The treated fibers were surveyed using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy analysis and TEM. The secondary fiber walls of windmill palm clearly showed only two layers at different reaction intervals with different lignin contents, even after almost all lignin was removed. We suggest that the two-layered structure in the secondary wall of palm leaf fibers, which presumably also applies to the homologous fibers in palm stems, is a specific character different from the fibers in other monocotyledons (such as bamboo and rattan) and dicot wood.


1966 ◽  
Vol 19 (3) ◽  
pp. 439 ◽  
Author(s):  
MC Probine ◽  
NF Barber

The internodal cells of Nitella opaca L. have been used in earlier studies to assess the part which mechanical properties of the wall may play in the control of cell growth (Probine and Preston 1962). The wall is mechanically anisotropic in both its plastic and elastic properties, and it is shown in this paper by an approximate theoretical treatment that a mat of cellulose microfibrils, embedded in a plastic matrix and having a distribution in the plane of the wall like that observed in Nitella, would lead to longitUdinal and transverse plastic extensions in the ratio observed in the growing cell. Factors which would affect cell shape are discussed.


2014 ◽  
Vol 79 (3) ◽  
pp. 492-506 ◽  
Author(s):  
Marta Busse‐Wicher ◽  
Thiago C. F. Gomes ◽  
Theodora Tryfona ◽  
Nino Nikolovski ◽  
Katherine Stott ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document