Multi-functional carboxymethyl chitin-based nanoparticles for modulation of tumor-associated macrophage polarity

2021 ◽  
pp. 118245
Author(s):  
Yunfeng Wan ◽  
Wenjie Yu ◽  
Jiami Li ◽  
Na Peng ◽  
Xiao Ding ◽  
...  
Nano Today ◽  
2021 ◽  
Vol 37 ◽  
pp. 101064
Author(s):  
Junyang Wang ◽  
Chao Zheng ◽  
Yihui Zhai ◽  
Ying Cai ◽  
Robert J. Lee ◽  
...  

2021 ◽  
Vol 22 (11) ◽  
pp. 5775
Author(s):  
Jun Ma ◽  
Clark C. Chen ◽  
Ming Li

The complex interaction between glioblastoma and its microenvironment has been recognized for decades. Among various immune profiles, the major population is tumor-associated macrophage, with microglia as its localized homolog. The present definition of such myeloid cells is based on a series of cell markers. These good sentinel cells experience significant changes, facilitating glioblastoma development and protecting it from therapeutic treatments. Huge, complicated mechanisms are involved during the overall processes. A lot of effort has been dedicated to crack the mysterious codes in macrophage/microglia recruiting, activating, reprogramming, and functioning. We have made our path. With more and more key factors identified, a lot of new therapeutic methods could be explored to break the ominous loop, to enhance tumor sensitivity to treatments, and to improve the prognosis of glioblastoma patients. However, it might be a synergistic system rather than a series of clear, stepwise events. There are still significant challenges before the light of truth can shine onto the field. Here, we summarize recent advances in this field, reviewing the path we have been on and where we are now.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Mei Song ◽  
Oladapo O. Yeku ◽  
Sarwish Rafiq ◽  
Terence Purdon ◽  
Xue Dong ◽  
...  

AbstractImmunosuppressive tumor microenvironment (TME) and ascites-derived spheroids in ovarian cancer (OC) facilitate tumor growth and progression, and also pose major obstacles for cancer therapy. The molecular pathways involved in the OC-TME interactions, how the crosstalk impinges on OC aggression and chemoresistance are not well-characterized. Here, we demonstrate that tumor-derived UBR5, an E3 ligase overexpressed in human OC associated with poor prognosis, is essential for OC progression principally by promoting tumor-associated macrophage recruitment and activation via key chemokines and cytokines. UBR5 is also required to sustain cell-intrinsic β-catenin-mediated signaling to promote cellular adhesion/colonization and organoid formation by controlling the p53 protein level. OC-specific targeting of UBR5 strongly augments the survival benefit of conventional chemotherapy and immunotherapies. This work provides mechanistic insights into the novel oncogene-like functions of UBR5 in regulating the OC-TME crosstalk and suggests that UBR5 is a potential therapeutic target in OC treatment for modulating the TME and cancer stemness.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Linbang Wang ◽  
Tao He ◽  
Jingkun Liu ◽  
Jiaojiao Tai ◽  
Bing Wang ◽  
...  

Abstract Background Tumor-associated macrophages (TAMs) are abundant in the tumor microenvironment (TME). However, their contribution to the immunosuppressive status of the TME remains unclear. Methods We integrated single-cell sequencing and transcriptome data from different tumor types to uncover the molecular features of TAMs. In vitro experiments and prospective clinical tests confirmed the results of these analysis. Results We first detected intra- and inter-tumoral heterogeneities between TAM subpopulations and their functions, with CD86+ TAMs playing a crucial role in tumor progression. Next, we focused on the ligand-receptor interactions between TAMs and tumor cells in different TME phenotypes and discovered that aberrant expressions of six hub genes, including FLI1, are involved in this process. A TAM-tumor cell co-culture experiment proved that FLI1 was involved in tumor cell invasion, and FLI1 also showed a unique pattern in patients. Finally, TAMs were discovered to communicate with immune and stromal cells. Conclusion We determined the role of TAMs in the TME by focusing on their communication pattern with other TME components. Additionally, the screening of hub genes revealed potential therapeutic targets.


Author(s):  
Victor Delprat ◽  
Carine Michiels

AbstractCancer progression largely depends on tumor blood vessels as well on immune cell infiltration. In various tumors, vascular cells, namely endothelial cells (ECs) and pericytes, strongly regulate leukocyte infiltration into tumors and immune cell activation, hence the immune response to cancers. Recently, a lot of compelling studies unraveled the molecular mechanisms by which tumor vascular cells regulate monocyte and tumor-associated macrophage (TAM) recruitment and phenotype, and consequently tumor progression. Reciprocally, TAMs and monocytes strongly modulate tumor blood vessel and tumor lymphatic vessel formation by exerting pro-angiogenic and lymphangiogenic effects, respectively. Finally, the interaction between monocytes/TAMs and vascular cells is also impacting several steps of the spread of cancer cells throughout the body, a process called metastasis. In this review, the impact of the bi-directional dialog between blood vascular cells and monocytes/TAMs in the regulation of tumor progression is discussed. All together, these data led to the design of combinations of anti-angiogenic and immunotherapy targeting TAMs/monocyte whose effects are briefly discussed in the last part of this review.


Sign in / Sign up

Export Citation Format

Share Document