Enhanced oxidation of chloramphenicol by GLDA-driven pyrite induced heterogeneous Fenton-like reactions at alkaline condition

2016 ◽  
Vol 294 ◽  
pp. 49-57 ◽  
Author(s):  
Deli Wu ◽  
Yufan Chen ◽  
Zhiyong Zhang ◽  
Yong Feng ◽  
Yanxia Liu ◽  
...  
2021 ◽  
Vol 764 ◽  
pp. 144200
Author(s):  
Huidong Cai ◽  
Xiang Li ◽  
Dachao Ma ◽  
Qingge Feng ◽  
Dongbo Wang ◽  
...  

2019 ◽  
Author(s):  
Jiahui Ji ◽  
Rashed M. Aleisa ◽  
Huan Duan ◽  
Jinlong Zhang ◽  
Yadong Yin ◽  
...  

Author(s):  
Junjian Li ◽  
Lianbao Ye ◽  
Yuanyuan Wang ◽  
Ying Liu ◽  
Xiaobao Jin ◽  
...  

Background: Spirocyclic indoline compounds widely exist in numerous natural products with good biological activities and some drug molecules in many aspects. In recent years, it has attracted extensive attention as potent anti-tumor agents in the fields of pharmacology and chemistry. Objective: In this study, we focused on designing and synthesizing a set of novel 1'-H-spiro[indole-3,4'-piperidine] derivatives, which were evaluated by preliminary bioactivity experiment in vitro and molecular docking. Method: The key intermediate 1'-methylspiro[indoline-3,4'-piperidine] (B4) reacted with benzenesulfonyl chloride with different substituents under alkaline condition to obtain its sulfonyl derivatives (B5-B10). We evaluated their antiproliferative activities against A549, BEL-7402 and HeLa cells by MTT assay. We performed the CDOCKER module in Discovery Studio 2.5.5 software for molecular modeling of compound B5, and investigated the binding of compound B5 with the target proteins from PDB database. Results: The results indicated that compounds B4-B10 exhibited good antiproliferative activities against the above three types of cells, in which compound B5 with chloride atom as electron-withdrawing substituent on a phenyl ring showed the highest potency against BEL-7402 cells (IC50=30.03±0.43 μg/mL). By binging of the prominent bioactive compound B5 to CDK, c-Met, EGFR protein crystals, The binding energy of B5 with these three types receptors are -44.3583 kcal/mol, - 38.3292 kcal/mol, -33.3653 kcal/mol respectively. Conclusion: Six 1'-methylspiro[indoline-3,4'-piperidine] derivatives were synthesized and evaluated against BEL-7402, A- 549, HeLa cell lines. Compound B5 showed significant inhibition on BEL-7402 cell lines. Molecular docking revealed that B5 showed good affinity by the good fitting between B5 and these three targets with amino acid residues in active sites which encourage us to conduct further evaluation such as the kinase experiment.


Author(s):  
Jiwei Zhang ◽  
Jingjing Xu ◽  
Shuaixia Liu ◽  
Baoxiang Gu ◽  
Feng Chen ◽  
...  

Background: Coal gangue was used as a catalyst in heterogeneous Fenton process for the degradation of azo dye and phenol. The influencing factors, such as solution pH gangue concentration and hydrogen peroxide dosage were investigated, and the reaction mechanism between coal gangue and hydrogen peroxide was also discussed. Methods: Experimental results showed that coal gangue has the ability to activate hydrogen peroxide to degrade environmental pollutants in aqueous solution. Under optimal conditions, after 60 minutes of treatment, more than 90.57% of reactive red dye was removed, and the removal efficiency of Chemical Oxygen Demand (COD) up to 72.83%. Results: Both hydroxyl radical and superoxide radical anion participated in the degradation of organic pollutant but hydroxyl radical predominated. Stability tests for coal gangue were also carried out via the continuous degradation experiment and ion leakage analysis. After five times continuous degradation, dye removal rate decreased slightly and the leached Fe was still at very low level (2.24-3.02 mg L-1). The results of Scanning Electron Microscope (SEM), energy dispersive X-Ray Spectrometer (EDS) and X-Ray Powder Diffraction (XRD) indicated that coal gangue catalyst is stable after five times continuous reuse. Conclusion: The progress in this research suggested that coal gangue is a potential nature catalyst for the efficient degradation of organic pollutant in water and wastewater via the Fenton reaction.


2019 ◽  
Vol 28 (3) ◽  
pp. 433-443 ◽  
Author(s):  
Mingwen Bai ◽  
Bo Song ◽  
Liam Reddy ◽  
Tanvir Hussain

Abstract MCrAlY–Al2O3 composite coatings were prepared by high-velocity oxygen fuel thermal spraying with bespoke composite powder feedstock for high-temperature applications. Powder processing via a suspension route was employed to achieve a fine dispersion of α-Al2O3 submicron particles on the MCrAlY powder surface. This was, however, compromised by ~ 50% less flowability of the feedstock during spraying. Nevertheless, the novel powder manufacturing process introduced in this study has shown potential as an alternative route to prepare tailored composite powder feedstock for the production of metal matrix composites. In addition, the newly developed MCrAlY–Al2O3 composite coatings exhibited superior oxidation resistance, compared to conventional MCrAlY coatings, with the formation of nearly exclusively Al2O3 scale after isothermal oxidation at 900 °C for 10 h. The addition of α-Al2O3 particles in the MCrAlY coatings as a second phase was found to have promoted the formation of YAG oxides (YxAlyOz) during spraying and also accelerated the outwards diffusion of Al, which resulted in enhanced oxidation resistance.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1007
Author(s):  
Azam Ali ◽  
Mariyam Sattar ◽  
Fiaz Hussain ◽  
Muhammad Humble Khalid Tareen ◽  
Jiri Militky ◽  
...  

The versatile one-pot green synthesis of a highly concentrated and stable colloidal dispersion of silver nanoparticles (Ag NPs) was carried out using the self-assembled tannic acid without using any other hazardous chemicals. Tannic acid (Plant-based polyphenol) was used as a reducing and stabilizing agent for silver nitrate in a mild alkaline condition. The synthesized Ag NPs were characterized for their concentration, capping, size distribution, and shape. The experimental results confirmed the successful synthesis of nearly spherical and highly concentrated (2281 ppm) Ag NPs, capped with poly-tannic acid (Ag NPs-PTA). The average particle size of Ag NPs-PTA was found to be 9.90 ± 1.60 nm. The colloidal dispersion of synthesized nanoparticles was observed to be stable for more than 15 months in the ambient environment (25 °C, 65% relative humidity). The synthesized AgNPs-PTA showed an effective antimicrobial activity against Staphylococcus Aureus (ZOI 3.0 mM) and Escherichia coli (ZOI 3.5 mM). Ag NPs-PTA also exhibited enhanced catalytic properties. It reduces 4-nitrophenol into 4-aminophenol in the presence of NaBH4 with a normalized rate constant (Knor = K/m) of 615.04 mL·s−1·mg−1. For comparison, bare Ag NPs show catalytic activity with a normalized rate constant of 139.78 mL·s−1·mg−1. Furthermore, AgNPs-PTA were stable for more than 15 months under ambient conditions. The ultra-high catalytic and good antimicrobial properties can be attributed to the fine size and good aqueous stability of Ag NPs-PTA. The unique core-shell structure and ease of synthesis render the synthesized nanoparticles superior to others, with potential for large-scale applications, especially in the field of catalysis and medical.


Author(s):  
Manoj Kumar Panjwani ◽  
Qing Wang ◽  
Yueming Ma ◽  
Yuxuan Lin ◽  
Feng Xiao ◽  
...  

The development of a heterogeneous Fenton-like catalyst, possessing high degradation efficiency in a wide pH range, is crucial for wastewater treatment. The Fe-Mn-SiO2 catalyst was designed, and prepared by a...


2010 ◽  
Vol 99 (1-2) ◽  
pp. 1-26 ◽  
Author(s):  
Sergio Navalon ◽  
Mercedes Alvaro ◽  
Hermenegildo Garcia
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document