Slurry erosion resistance of thermally sprayed Nb2O5 and Nb2O5+WC12Co composite coatings deposited on AISI 1020 carbon steel

2020 ◽  
Vol 46 (17) ◽  
pp. 27670-27678
Author(s):  
Hipólito Carvajal Fals ◽  
Luciano Augusto Lourençato ◽  
Mario Sánchez Orozco ◽  
Maria Julia Xavier Belém ◽  
Carlos Roberto Camello Lima
Wear ◽  
1999 ◽  
Vol 232 (2) ◽  
pp. 207-212 ◽  
Author(s):  
Jari Knuuttila ◽  
Samppa Ahmaniemi ◽  
Tapio Mäntylä

2011 ◽  
Vol 686 ◽  
pp. 569-573 ◽  
Author(s):  
Ming Feng Tan ◽  
Wan Chang Sun ◽  
Lei Zhang ◽  
Quan Zhou ◽  
Jin Ding

Electroless Ni-P coating containing ZrO2particles was successfully co-deposited on low carbon steel substrate. The surface and cross-sectional micrographs of the composite coatings were observed with scanning electron microscopy (SEM). And the chemical composition of the coating was analyzed with energy dispersive spectroscopy (EDS). The oxidation resistance was evaluated by weight gains during high temperature oxidation test. The results showed that the embedded ZrO2particles with irregular shape uniformly distributed in the entire Ni-P matrix, and the coating showed a good adhesion to the substrate. The weight gain curves of Ni-P-ZrO2composite coatings and Ni-P coating at 923K oxidation experiments were in accordance with . The ZrO2particles in Ni-P matrix could significantly enhance the high temperature oxidation resistance of the carbon steel substrate as compared to pure Ni-P coating.


2000 ◽  
Vol 277 (1-2) ◽  
pp. 176-182 ◽  
Author(s):  
Pi Lin Liu ◽  
Jian Ku Shang ◽  
Oludele O Popoola

Author(s):  
E. Lugscheider ◽  
C. Herbst-Dederichs ◽  
A. Reimann

Abstract Quasicrystalline phases improve many alloy properties such as thermomechanical stability, thermal and electrical conductivity, and tribological performance. High hardness, however, is accompanied by brittleness, an undesired property in many applications. Reduced brittleness can be achieved by embedding quasicrystalline phases in a more ductile material, forming a metal-matrix composite that retains some quasicrystalline properties. This study evaluates thermally sprayed coatings made from different compositions of such composites. The coatings assessed were produced by arc-wire, HVOF, and atmospheric plasma spraying using various forms of feed material, including blended, agglomerated, chemical encased, and attrition-milled powders and filled wires. The investigation involved metallurgical analysis, proving the existence of quasicrystal content and assessing the matrix phase, and tests showing how sliding wear is influenced by the composition of quasicrystalline phases.


Author(s):  
Rajeev Kumar ◽  
Sanjeev Bhandari ◽  
Atul Goyal

Various aspects such as development, experimentation, and analysis have been covered in the present work to examine the behavior of test coatings under slurry erosion. The primary objective of the present study was to establish the specific mass loss from the test coatings under various slurry environmental conditions and highlights the importance of the addition of alumina in improving the slurry erosion resistance of Ni-TiO2 coating. To attain this objective, two powder compositions, viz. Ni-20TiO2 and Ni-15TiO2-5Al2O3 were deposited onto the CA6NM grade hydro-turbine steel using high velocity frame spray process. The microstructural characterization of the coatings was done by employing surface roughness tester, scanning electron microscope/energy-dispersive X-ray spectroscopy, and X-ray diffraction techniques, whereas mechanical analysis was carried out using micro-hardness and bond strength tester. The slurry erosion tests were performed using an indigenously fabricated high speed slurry erosion test rig at different levels of rotational speed, average particle size of erodent, and slurry concentration in order to explore their effects on slurry erosion performance of test coatings. The slurry erosion results, as well as scanning electron microscope observations of eroded specimens, revealed higher slurry erosion resistance of Ni-15TiO2-5Al2O3 coating in comparison with Ni-20TiO2 coating. Furthermore, each operational parameter was found to have a proportional effect on specific mass loss in case of both the coatings.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jashanpreet Singh ◽  
Jatinder Pal Singh

Purpose This study aims to deal with development and performance analysis of high-velocity oxy-fuel (HVOF) thermally sprayed Mo2C-based WC-CoCr (tungsten carbine cobalt chrome) (Co-10% and Cr-4%) cermet coating deposited on the pump impeller steel 316 L. Design/methodology/approach In this work, a study was carried out by modifying the conventional WC-CoCr powder with a small addition of molybdenum carbide (Mo2C). Reinforcement was done by 1–4 wt.% addition of Mo2C feedstocks in WC-CoCr powder by using a jar ball mill process. The design of experiment was implemented for optimization of the percentage of Mo2C feedstock. L16 (4 × 4) orthogonal array was used to design the experiments for erosion output for the input parameters namely velocity, particle size, concentration and Mo2C proportion. Findings Results show that the Mo2C-based WC-CoCr coating provides better microhardness as compared to conventional WC-CoCr coating. The present study also reveals that the deposition of conventional WC-CoCr coating has improved the wear resistance of SS 316 L by 9.98%. However, the slurry erosion performance of conventional WC-CoCr coating was improved as 69.6% by the addition of 3% Mo2C. Practical implications WC-CoCr coatings are universally used for protecting the equipment and machinery from abrasion, erosion and corrosion. So, the 3% Mo2C-based WC-CoCr can be useful in power plants and various industries like mining, chemical, automobile, cementing and food processing industries. Originality/value A new HVOF coating has been developed by the addition of Mo2C feedstock in WC-CoCr powder (Co 10% and Cr 4%) and the percentage of Mo2C feedstock was optimized to improve the tribological behavior of WC-CoCr coating.


Sign in / Sign up

Export Citation Format

Share Document