Pilot-scale cultivation of water-net in secondary effluent using an open pond raceway for nutrient removal and bioethanol production

Chemosphere ◽  
2021 ◽  
pp. 130129
Author(s):  
Kyung Jin Min ◽  
Doo Young Oh ◽  
Ki Young Park
1998 ◽  
Vol 38 (1) ◽  
pp. 327-334 ◽  
Author(s):  
P. Pavan ◽  
P. Battistoni ◽  
P. Traverso ◽  
A. Musacco ◽  
F. Cecchi

The paper presents results coming from experiments on pilot scale plants about the possibility to integrate the organic waste and wastewater treatment cycles, using the light organic fraction produced via anaerobic fermentation of OFMSW as RBCOD source for BNR processes. The effluent from the anaerobic fermentation process, with an average content of 20 g/l of VFA+ lactic acid was added to wastewater to be treated in order to increase RBCOD content of about 60-70 mg/l. The results obtained in the BNR process through the addition of the effluent from the fermentation unit are presented. Significant increase of denitrification rate was obtained: 0.06 KgN-NO3/KgVSS d were denitrified in the best operative conditions studied. -Vmax shows values close to those typical of the pure methanol addition (about 0.3 KgN-NO3/KgVSS d). A considerable P release (35%) was observed in the anaerobic step of the BNR process, even if not yet a completely developed P removal process.


2011 ◽  
Vol 64 (12) ◽  
pp. 2352-2361 ◽  
Author(s):  
A. Luczkiewicz ◽  
K. Jankowska ◽  
R. Bray ◽  
E. Kulbat ◽  
B. Quant ◽  
...  

The main objective of the study was to assess the potential of three systems (UV irradiation, ozonation, and micro/ultrafiltration) operated in a pilot scale in removal of antimicrobial-resistant fecal bacteria from secondary effluent of the local wastewater treatment plant (700,000 population equivalent). The effectiveness of the processes was analysed using the removal ratio of fecal indicators (Escherichia coli and Enterococcus spp.). The susceptibility of fecal indicators to antimicrobial agents important in human therapy was examined. Resistance to nitrofurantoin and erythromycin was common among enterococci and followed by resistance to fluoroquinolones and tetracycline. Resistance to high-level aminoglycosides and glycopeptides was also observed. E. coli isolates were most frequently resistant to penicillins and tetracycline. The extended-spectrum beta-lactamase-producing E. coli was detected once, after ozonation. Substantial attention should be paid to the E. coli and enterococci resistant to three or more chemical classes of antimicrobials (MAR), which in general constituted up to 15 and 49% of the tested isolates, respectively. Although the applied methods were effective in elimination of fecal indicators (removal efficiency up to 99.99%), special attention has to be paid to the application of sufficient disinfection and operation conditions to avoid selection of antimicrobial resistant bacteria.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1085 ◽  
Author(s):  
Fan Liu ◽  
Nadia Nord ◽  
Kai Bester ◽  
Jes Vollertsen

Microplastic (MP) pollution is a global environmental issue, and traditionally treated wastewater has been identified as a source of land-based microplastics into the aquatic environment. This study evaluated the performance of a pilot-scale biofilter to polish wastewater treatment plant (WWTP) effluent before it enters the environment. The filter was divided into four zones, allowing the concentration of microplastics to be followed through the filter. It was fed with secondary effluent from a conventional WWTP in Denmark. The raw effluent from the WWTP contained 917 items m−3 which corresponded to a mass concentration of 24.8 µg m−3. After the top layer of the biofilter, the concentration had decreased to a median value of 197 item m−3 and 2.8 µg m−3, indicating an overall removal efficiency of 79% in terms of particle number and 89% in terms of particle mass. We also observed a tendency that MP of larger size and higher particle mass were more likely to be retained. After the last filtration zone, all MP larger than 100 µm had been removed. The results of this study demonstrate that biofilters are able to lower the MP abundance in treated wastewater significantly, but a complete removal is not ensured, hence some MP, particularly small-sized ones, can still be discharged into the receiving environment.


RSC Advances ◽  
2020 ◽  
Vol 10 (31) ◽  
pp. 18147-18159 ◽  
Author(s):  
José A. Pérez-Pimienta ◽  
Gabriela Papa ◽  
John M. Gladden ◽  
Blake A. Simmons ◽  
Arturo Sanchez

A pilot-scale continuous tubular reactor increases enzymatic digestibility of four different feedstocks by removing xylan and effectively achieving economically viable ethanol concentrations.


2014 ◽  
Vol 70 (7) ◽  
pp. 1195-1204 ◽  
Author(s):  
Yonggui Zhao ◽  
Yang Fang ◽  
Yanling Jin ◽  
Jun Huang ◽  
Shu Bao ◽  
...  

The effects of water depth, coverage rate and harvest regime on nutrient removal from wastewater and high-protein biomass production were assessed in a duckweed-based (Lemna aequinoctialis) pilot-scale wastewater treatment system (10 basins × 12 m2) that is located near Dianchi Lake in China. The results indicated that a water depth of 50 cm, a coverage rate of 150% and a harvest regime of 4 days were preferable conditions, under which excellent records of high-protein duckweed (dry matter production of 6.65 g/m2/d with crude protein content of 36.16% and phosphorus content of 1.46%) were obtained at a temperature of 12–21 °C. At the same time, the system achieved a removal efficiency of 66.16, 23.1, 48.3 and 76.52% for NH4+-N, TN, TP and turbidity, respectively, with the considerable removal rate of 0.465 g/m2/d for TN and 0.134 g/m2/d for TP at a hydraulic retention time of 6 days. In additionally, it was found that a lower duckweed density could lead to higher dissolved oxygen in the water and then a higher removal percentage of NH4+-N by nitrobacteria. This study obtains the preferable operation conditions for wastewater treatment and high-protein biomass production in a duckweed-based pilot-scale system, supplying an important reference for further large-scale applications of duckweed.


2011 ◽  
Vol 63 (7) ◽  
pp. 1446-1452 ◽  
Author(s):  
Jia-wei Wang ◽  
Tian-zhu Zhang ◽  
Ji-ning Chen ◽  
Zhi-rong Hu

Biological nutrient removal requires sufficient carbon source. Meanwhile, the removal of organic matter in wastewater requires energy consumption in the aeration tank. Carbon source for nutrient removal in most wastewater treatment plants with conventional primary clarifier (CPC) is generally insufficient in China. In order to increase carbon source and to save energy, a part of the CPC may be retrofitted as an activated primary clarifier (APC). In this paper, a pilot scale experiment was conducted to examine the performance of primary sludge fermentation and its effect on nitrogen and phosphorus removal. Results show that the primary sludge fermentation in APC has produced a similar VFA/TP ratio but a higher BOD5/TN ratio compared with those in the CPC effluent, and the TN concentrations in the secondary effluent are at 8.0, 10.8, and 17.4 mg/L, while TP is at 0.45, 1.10, and 2.28 mg/L when the pilot test system was fed with (1) the APC effluent, (2) 50% from the APC effluent and 50% from the CPC effluent, and (3) the CPC effluent, respectively. Results also indicate that the BOD5/TN ratio is a more sensitive factor than the VFA/TP ratio for nutrient removal and energy conservation for the APC fermentation.


Author(s):  
Samar A. El-Mekkawi ◽  
Sayeda M. Abdo ◽  
Farag A. Samhan ◽  
Gamila H. Ali

Abstract Background Algal biomass fermentation is one of the promising alternatives for bioethanol production. The bioethanol yield relies on fermentation conditions as the algal biomass amount, the yeast volume (% v/v), and the fermentation time. In this work, algal biomass harvested from a pilot-scale high rate algal pond (HRAP) was fermented anaerobically using immobilized Saccharomyces cerevisiae (ATCC 4126). The HRAP was constructed at the Zenin wastewater treatment plant (WTP), Giza, Egypt. A separate hydrolysis fermentation process (SHF) was applied for algal biomass. The effect of the algal biomass amount, the yeast volume (% v/v), and the time of fermentation as three independent variables were studied simultaneously and analyzed statistically using Design-Expert software V6.0.8. Results The harvested algal biomass from HRAP contains 45% carbohydrates and was dominated by Microcystis sp. The results revealed that optimum bioethanol yield 18.57 g/L is achieved by fermenting 98.7 g/L algae using 15.09% of the volume immobilized yeast for 43.6 h with a 95% confidence interval. Conclusion Microalgae grown on wastewater are a promising source of bioethanol production. Maximizing the ethanol production is achieved by optimizing the fermentation parameters as algal biomass, fermentation time, and yeast volume percent. The simultaneous optimization of the parameters using a statistical program is an effective way to maximize the production and predict a model that describes the relationship between these parameters and their response. The prospective research is going to study the effect of these predicted parameters on continuous fermentation on the semi-pilot scale.


2003 ◽  
Vol 47 (11) ◽  
pp. 9-15 ◽  
Author(s):  
T. McCue ◽  
R. Shah ◽  
I. Vassiliev ◽  
Y.-H. Liu ◽  
F.G. Eremektar ◽  
...  

The objective of this NSF sponsored research was to provide a controlled comparison of identical continuous flow biological nutrient removal (BNR) processes both with and without prefermentation in order to provide a stronger, more quantitative, technical basis for design engineers to determine the potential benefits of prefermentation to EBPR in treating domestic wastewater. Specifically, this paper focused upon the potential impacts of primary influent prefermentation upon BNR processes treating septic domestic wastewater. This study can be divided into two distinct phases - an initial bench-scale phase which treated septic P-limited (TCOD:TP>40) wastewater and a subsequent pilot-scale phase which treated septic COD-limited (TCOD:TP<40) wastewater. The following conclusions can be drawn from the results obtained to date.•Prefermentation increased both RBCOD, SBCOD and VFA content of septic domestic wastewater.•Prefermentation resulted in increased biological P removal for a highly septic, non-P limited (TCOD:TP<40:1) wastewater. However, in septic, P-limited (TCOD:TP>40:1) wastewater, changes in net P removal due to prefermentation were suppressed by limited P availability, even though P release and PHA content were affected.•Prefermentation increased specific anoxic denitrification rates for both COD and P-limited wastewaters, and in the pilot (COD-limited) study also coincided with greater system N removal.


Sign in / Sign up

Export Citation Format

Share Document