Wettability control of PET surface by plasma-induced polymer film deposition and plasma/UV oxidation in ambient air

Author(s):  
Keiko Gotoh ◽  
Eriko Shohbuke ◽  
Yasuyuki Kobayashi ◽  
Hirohisa Yamada
Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 6024
Author(s):  
Sandra Gaiser ◽  
Urs Schütz ◽  
Patrick Rupper ◽  
Dirk Hegemann

The concept of depositing solid films on low-vapor pressure liquids is introduced and developed into a top-down approach to functionalize surfaces by attaching liquid polyethylene glycol (PEG). Solid-liquid gradients were formed by low-pressure plasma treatment yielding cross-linking and/or deposition of a plasma polymer film subsequently bound to a flexible polydimethylsiloxane (PDMS) backing. The analysis via optical transmission spectroscopy (OTS), optical, confocal laser scanning (CLSM) and scanning electron microscopy (SEM), Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) as well as by water contact angle (WCA) measurements revealed correlations between optical appearance, chemical composition and surface properties of the resulting water absorbing, covalently bound PEG-functionalized surfaces. Requirements for plasma polymer film deposition on low-vapor pressure liquids and effective surface functionalization are defined. Namely, the thickness of the liquid PEG substrate was a crucial parameter for successful film growth and covalent attachment of PEG. The presented method is a practicable approach for the production of functional surfaces featuring long-lasting strong hydrophilic properties, making them predestined for non-fouling or low-friction applications.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2692
Author(s):  
Tsegaye Gashaw Getnet ◽  
Milton E. Kayama ◽  
Elidiane C. Rangel ◽  
Nilson C. Cruz

Eugenol (4-Allyl-2-methoxyphenol) is the main constituent of clove oil. In addition to being widely used as a condiment, it has been recognized as a powerful bactericide. Owing to that, Eugenol has been used in several applications including odontology and as a conservative for food products. Aiming at the development of natural bactericide coatings, in this work, using an atmospheric pressure plasma in a dielectric barrier discharge (DBD) reactor Eugenol was deposited on stainless steel substrate, with argon as a carrier gas. The discharge power supply was a transformer at 14.4 kV peak-to-peak voltage and 60 Hz frequency. Operating with a gas flow rate at 4 L/min, the active power was around 1.2 W. The maximum plasma electron temperature of the plasma with monomers was about 1.5 eV, estimated by visible emission spectroscopy using a local thermodynamic equilibrium approach. The study also comprehended the analysis of the film structure, aging, and thermal stability using infrared reflectance spectroscopy, and its thicknesses and roughness by profilometry. The thickness of the films was in the range of 1000 to 2400 nm with a roughness of up to 800 nm with good adhesion on the substrate. The FTIR result shows a stable coating with a chemical structure similar to that of the monomer. Aging analysis showed that the film does not degrade, even after exposing the film for 120 days in ambient air and for 1.0 h under a high thermal UV-lamp.


Author(s):  
Tatsuya Fujii ◽  
Takahiro Namazu ◽  
Koichi Sudoh ◽  
Shouichi Sakakihara ◽  
Shozo Inoue

In this paper, the effect of surface damage induced by focused ion beam (FIB) fabrication on the mechanical properties of silicon (Si) nanowires (NWs) was investigated. Uniaxial tensile testing of the NWs was performed using a reusable on-chip tensile test device with 1000 pairs of comb structures working as an electrostatic force actuator, a capacitive displacement sensor, and a force sensor. Si NWs were made from silicon-on-nothing (SON) membranes that were produced by deep reactive ion etching hole fabrication and ultrahigh vacuum annealing. Micro probe manipulation and film deposition functions in a FIB system were used to bond SON membranes to the device's sample stage and then to directly fabricate Si NWs on the device. All the NWs showed brittle fracture in ambient air. The Young's modulus of 57 nm-wide NW was 107.4 GPa, which was increased to 144.2 GPa with increasing the width to 221 nm. The fracture strength ranged from 3.9 GPa to 7.3 GPa. By assuming the thickness of FIB-induced damage layer, the Young's modulus of the layer was estimated to be 96.2 GPa, which was in good agreement with the literature value for amorphous Si.


2015 ◽  
Vol 9 (6) ◽  
pp. 629-635 ◽  
Author(s):  
Potejana Potejanasak ◽  
◽  
Masahiko Yoshino ◽  
Motoki Terano ◽  
Masahiro Mita ◽  
...  

A new fabrication process of metal nanodot arrays using the thermal dewetting method was developed in this study. This process was comprised of three steps: thin Au film deposition on a quartz glass substrate, groove patterning by direct nanoimprinting, and self-organization of metal nanodot arrays by thermal dewetting. A new idea to utilize a polymer film mold for groove patterning by direct nanoimprinting was examined. The polymer film mold was prepared by hot-embossing groove patterns of a mother mold on a cyclo olefin polymer (COP) film. The mother mold was prepared from a silicon wafer. The polymer film mold was used for direct nanoimprinting on a metal film deposited on a quartz substrate. The experimental results revealed that the COP film mold can effectively form a micro groove pattern on the Au film despite the COP film mold being softer than the Au film. The micro groove on the Au film was also found to be effective in aligning the nanodots in lines. The micro groove patterning using the COP film mold was also confirmed to be useful in controlling the dot size and alignment during the thermal dewetting process.


1994 ◽  
Vol 33 (Part 2, No. 12A) ◽  
pp. L1717-L1720 ◽  
Author(s):  
Tetsuo Ono ◽  
Ryoji Hamasaki ◽  
Tatsumi Mizutani

2010 ◽  
Vol 1245 ◽  
Author(s):  
Haijun Jia ◽  
Michio Kondo

AbstractA multi-pressure microwave plasma source is developed and is applied for the fast deposition of crystalline silicon films. In this paper, the plasma source is diagnosed firstly. Electron density, electron temperature and discharge gas temperature of the plasmas generated in ambient air are studied using optical emission spectroscopy (OES) method. By using the high density microwave plasma source, depositions of crystalline silicon films from SiH4+He mixture at reduced pressure conditions are investigated systematically. After optimizing the film deposition conditions, highly crystallized Si films are deposited at a rate higher than 700 nm/s. We also find that the deposited films are fully crystallized and crystalline structure of the deposited film evolves along the film growth direction, i.e. large grains in surface region while small grains in the bottom region of the film. Based on the observed results, a possible mechanism, the annealing-assisted plasma-enhanced chemical vapor deposition, is proposed to describe the film growth process.


1996 ◽  
Vol 68 (24) ◽  
pp. 3386-3388 ◽  
Author(s):  
Y. Vickie Pan ◽  
Ernesto Z. Barrios ◽  
Denice D. Denton

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1036
Author(s):  
Marian Mogildea ◽  
George Mogildea ◽  
Valentin Craciun ◽  
Sorin I. Zgura

The effects induced by microwave field upon tungsten wires of different diameters were investigated. Tungsten wires with 0.5 and 1.0 mm diameters were placed in the focal point of a single-mode cylindrical cavity linked to a microwave generator and exposed to microwave field in ambient air. The experimental results showed that the 0.5 mm diameter wire was completely vaporized due to microwaves strong absorption, while the wire with 1 mm diameter was not ignited. During the interaction between microwaves and tungsten wire with 0.5 mm diameter, a plasma with a high electronic excitation temperature was obtained. The theoretical analysis of the experiment showed that the voltage generated by metallic wires in interaction with microwaves depended on their electric resistance in AC and the power of the microwave field. The physical parameters and dimension of the metallic wire play a crucial role in the ignition process of the plasma by the microwave field. This new and simple method to generate a high-temperature plasma from a metallic wire could have many applications, especially in metal oxides synthesis, metal coatings, or thin film deposition.


Sign in / Sign up

Export Citation Format

Share Document