Dynamic contact modeling of anisotropic magneto-electro-elastic materials with volume fraction changes

2015 ◽  
Vol 131 ◽  
pp. 1099-1110 ◽  
Author(s):  
Yue-Ting Zhou ◽  
Tae-Won Kim
2014 ◽  
Vol 81 (7) ◽  
Author(s):  
Yue-Ting Zhou ◽  
Zheng Zhong

An exact analysis on frictional contact between a rigid punch and anisotropic magneto-electro-elastic materials is performed, within the framework of the fully coupled theory. The indenter moves relative to magneto-electro-elastic materials, and Coulomb friction law is used. The mixed boundary value problem is reduced to singular integral equations of the second kind with analytical solution presented. For a triangular or semiparabolic indenter, explicit expression for surface physical in-plane stress, electrical displacement and magnetic induction are obtained. Influences of the friction coefficient and the volume fraction on contact behaviors are detailed under the prescribed contact loading conditions. Under either a triangular or semiparabolic indenter, the surface in-plane stress, electric displacement and magnetic induction are discontinuous and unbounded around the leading edge, and such a serious near-edge response can be relieved through adjusting the values of the friction coefficient or the volume fraction.


Author(s):  
R. Lianngenga ◽  
J. Lalvohbika ◽  
Lalawmpuia Tochhawng ◽  
L. P. Lalduhawma ◽  
Denghmingliani Zadeng

By considering no more interaction between wryness tensor and change in voids volume fraction in the materials, the reflection problem of plane longitudinal waves at a free boundary of micropolar elastic materials with voids has been investigated. We have obtained the amplitude and energy ratios of reflected waves for the incident longitudinal wave by using appropriate boundary conditions. The effect of void parameters in the nondimensional wavenumber, amplitude and energy ratios are computed numerically for the particular material’s model.


2019 ◽  
Vol 25 (1) ◽  
pp. 46-59 ◽  
Author(s):  
Simona De Cicco ◽  
Fabio De Angelis

This article is concerned with the linear theory of elastic materials with voids. With respect to the classical theory of elasticity, this model is characterized by four independent kinematic variables: the displacement field [Formula: see text][Formula: see text] and the change in volume fraction [Formula: see text]. First, we present the field equations in the equilibrium theory and derive the equations of the plane strain problem. Then, the problem of a cylindrical rigid inclusion in an infinite body is investigated. The results are obtained in closed form. The solution can be considered as a generalization of the corresponding problem in the classical theory of elasticity. The displacement field and the stresses are expressed by mean of explicit formulas. The maximum tensile stress and the stress concentration factor are calculated.


Author(s):  
E. F. Koch ◽  
E. L. Hall ◽  
S. W. Yang

The plane-front solidified eutectic alloys consisting of aligned tantalum monocarbide fibers in a nickel alloy matrix are currently under consideration for future aircraft and gas turbine blades. The MC fibers provide exceptional strength at high temperatures. In these alloys, the Ni matrix is strengthened by the precipitation of the coherent γ' phase (ordered L12 structure, nominally Ni3Al). The mechanical strength of these materials can be sensitively affected by overall alloy composition, and these strength variations can be due to several factors, including changes in solid solution strength of the γ matrix, changes in they γ' size or morphology, changes in the γ-γ' lattice mismatch or interfacial energy, or changes in the MC morphology, volume fraction, thermal stability, and stoichiometry. In order to differentiate between these various mechanisms, it is necessary to determine the partitioning of elemental additions between the γ,γ', and MC phases. This paper describes the results of such a study using energy dispersive X-ray spectroscopy in the analytical electron microscope.


Author(s):  
D. E. Fornwalt ◽  
A. R. Geary ◽  
B. H. Kear

A systematic study has been made of the effects of various heat treatments on the microstructures of several experimental high volume fraction γ’ precipitation hardened nickel-base alloys, after doping with ∼2 w/o Hf so as to improve the stress rupture life and ductility. The most significant microstructural chan§e brought about by prolonged aging at temperatures in the range 1600°-1900°F was the decoration of grain boundaries with precipitate particles.Precipitation along the grain boundaries was first detected by optical microscopy, but it was necessary to use the scanning electron microscope to reveal the details of the precipitate morphology. Figure 1(a) shows the grain boundary precipitates in relief, after partial dissolution of the surrounding γ + γ’ matrix.


Author(s):  
B. Ralph ◽  
A.R. Jones

In all fields of microscopy there is an increasing interest in the quantification of microstructure. This interest may stem from a desire to establish quality control parameters or may have a more fundamental requirement involving the derivation of parameters which partially or completely define the three dimensional nature of the microstructure. This latter categorey of study may arise from an interest in the evolution of microstructure or from a desire to generate detailed property/microstructure relationships. In the more fundamental studies some convolution of two-dimensional data into the third dimension (stereological analysis) will be necessary.In some cases the two-dimensional data may be acquired relatively easily without recourse to automatic data collection and further, it may prove possible to perform the data reduction and analysis relatively easily. In such cases the only recourse to machines may well be in establishing the statistical confidence of the resultant data. Such relatively straightforward studies tend to result from acquiring data on the whole assemblage of features making up the microstructure. In this field data mode, when parameters such as phase volume fraction, mean size etc. are sought, the main case for resorting to automation is in order to perform repetitive analyses since each analysis is relatively easily performed.


Author(s):  
N. Y. Jin

Localised plastic deformation in Persistent Slip Bands(PSBs) is a characteristic feature of fatigue in many materials. The dislocation structure in the PSBs contains regularly spaced dislocation dipole walls occupying a volume fraction of around 10%. The remainder of the specimen, the inactive "matrix", contains dislocation veins at a volume fraction of 50% or more. Walls and veins are both separated by regions in which the dislocation density is lower by some orders of magnitude. Since the PSBs offer favorable sites for the initiation of fatigue cracks, the formation of the PSB wall structure is of great interest. Winter has proposed that PSBs form as the result of a transformation of the matrix structure to a regular wall structure, and that the instability occurs among the broad dipoles near the center of a vein rather than in the hard shell surounding the vein as argued by Kulmann-Wilsdorf.


Author(s):  
B. B. Rath ◽  
J. E. O'Neal ◽  
R. J. Lederich

Addition of small amounts of erbium has a profound effect on recrystallization and grain growth in titanium. Erbium, because of its negligible solubility in titanium, precipitates in the titanium matrix as a finely dispersed second phase. The presence of this phase, depending on its average size, distribution, and volume fraction in titanium, strongly inhibits the migration of grain boundaries during recrystallization and grain growth, and thus produces ultimate grains of sub-micrometer dimensions. A systematic investigation has been conducted to study the isothermal grain growth in electrolytically pure titanium and titanium-erbium alloys (Er concentration ranging from 0-0.3 at.%) over the temperature range of 450 to 850°C by electron microscopy.


Author(s):  
Jordi Marti ◽  
Timothy E. Howson ◽  
David Kratz ◽  
John K. Tien

The previous paper briefly described the fine microstructure of a mechanically alloyed oxide dispersion strengthened nickel-base solid solution. This note examines the fine microstructure of another mechanically alloyed system. This alloy differs from the one described previously in that it is more generously endowed with coherent precipitate γ forming elements A1 and Ti and it contains a higher volume fraction of the finely dispersed Y2O3 oxide. An interesting question to answer in the comparative study of the creep and stress rupture of these two ODS systems is the role of the precipitate γ' in the mechanisms of creep and stress rupture in alloys already containing oxide dispersoids.The nominal chemical composition of this alloy is Ni - 20%Cr - 2.5%Ti - 1.5% A1 - 1.3%Y203 by weight. The system receives a three stage heat treatment-- the first designed to produce a coarse grain structure similar to the solid solution alloy but with a smaller grain aspect ratio of about ten.


Sign in / Sign up

Export Citation Format

Share Document