scholarly journals Mechanical Performance of 3D Printed Interpenetrating Phase Composites with Spinodal Topologies

2021 ◽  
pp. 113693
Author(s):  
Yunfei Zhang ◽  
Meng-Ting Hsieh ◽  
Lorenzo Valdevit
Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1949
Author(s):  
Ling Ding ◽  
Wei Lu ◽  
Jiaqi Zhang ◽  
Chuncheng Yang ◽  
Guofeng Wu

Literature has reported the successful use of 3D printed polyetheretherketone (PEEK) to fabricate human body implants and oral prostheses. However, the current 3D printed PEEK (brown color) cannot mimic the vivid color of oral tissues and thus cannot meet the esthetical need for dental application. Therefore, titanium dioxide (TiO2) and ferric oxide (Fe2O3) were incorporated into PEEK to prepare a series of tooth-color and gingival-color PEEK composites in this study. Through color measurements and mechanical tests, the color value and mechanical performance of the 3D printed PEEK composites were evaluated. In addition, duotone PEEK specimens were printed by a double nozzle with an interface between tooth-color and gingival-color parts. The mechanical performance of duotone PEEK with two different interfaces (horizontal and vertical) was investigated. With the addition of TiO2 and Fe2O3, the colors of 3D printed PEEK composites become closer to that of dental shade guides. 3D printed PEEK composites generally demonstrated superior tensile and flexural properties and hence have great potential in the dental application. In addition, duotone 3D printed PEEK with a horizontal interfacial orientation presented better mechanical performance than that with a vertical one.


2021 ◽  
Author(s):  
Karolina E. Mazur ◽  
Aleksandra Borucka ◽  
Paulina Kaczor ◽  
Szymon Gądek ◽  
Stanislaw Kuciel

Abstract In the study, polylactide-based (PLA) composites modified with natural particles (wood, bamboo, and cork) and with different levels of infilling (100%, 80%, and 60%) obtained by additive methods were tested. The effect of type fiber, infill level and crystallization rate on the mechanical properties were investigated by using tensile, flexural, and impact tests. The materials were subjected to mechanical tests carried out at 23 and 80 °C. Furthermore, hydrothermal degradation was performed, and its effect on the properties was analyzed. The addition of natural fillers and different level of infilling result in a similar level of reduction in the properties. Composites made of PLA are more sensitive to high temperature than to water. The decrease in Young's modulus of PLA at 80 °C was 90%, while after 28 days of hydrodegradation ~ 9%. The addition of fibers reduced this decrease at elevated temperatures. Moreover, the impact strength has been improved by 50% for composites with cork particles and for other lignocellulosic composites remained at the same level as for resin.


2019 ◽  
Vol 25 ◽  
pp. 52-57
Author(s):  
Eva Heiml ◽  
Anna Kalteis ◽  
Zoltan Major

Lattice structures are currently of high interest, especially for lightweight design. They generally have better structural performance per weight than parts made of bulk material. With conventional manufacturing techniques they are difficult to produce, but with additive manufacturing (AM) fabricationisfeasible. To better understand their behaviour under various loading conditions two lattice structures in different configurations were observed. For each structure three different test specimens were designed and manufactured using selective laser sintering (SLS). To investigate the mechanical performance under large deformations the specimens were made of a thermoplastic polyurethane(TPU), which shows a hyperelastic material behaviour. Beside the experimental observations also finite element analyses (FEA) were conducted to investigate the deformation behaviour in more detail.


2021 ◽  
Vol 27 (3) ◽  
pp. 465-474
Author(s):  
Martin Krčma ◽  
David Škaroupka ◽  
Petr Vosynek ◽  
Tomáš Zikmund ◽  
Jozef Kaiser ◽  
...  

Purpose This paper aims to focus on the evaluation of a polymer concrete as a three-dimensional (3D) printing material. An associated company has developed plastic concrete made from reused unrecyclable plastic waste. Its intended use is as a construction material. Design/methodology/approach The concrete mix, called PolyBet, composed of polypropylene and glass sand, is printed by the fused deposition modelling process. The process of material and parameter selection is described. The mechanical properties of the filled material were compared to its cast state. Samples were made from castings and two different orientations of 3D-printed parts. Three-point flex tests were carried out, and the area of the break was examined. Computed tomography of the samples was carried out. Findings The influence of the 3D printing process on the material was evaluated. The mechanical performance of the longitudinal samples was close to the cast state. There was a difference in the failure mode between the states, with cast parts exhibiting a tougher behaviour, with fractures propagating in a stair-like manner. The 3D-printed samples exhibited high degrees of porosity. Originality/value The results suggest that the novel material is a good fit for 3D printing, with little to no degradation caused by the process. Layer adhesion was shown to be excellent, with negligible effect on the finished part for the longitudinal orientation. That means, if large-scale testing of buildability is successful, the material is a good fit for additive manufacturing of building components and other large-scale structures.


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3133
Author(s):  
Jacek Katzer ◽  
Tomasz Szatkiewicz

In their fourth decade of development, additive manufacturing technologies are slowly entering research programs dedicated to building materials. While the majority of research effort is focused on using 3D printing of concrete, the authors propose using the technology for creation of spatial plastic reinforcement. Obviously, the strength properties of a 3D printed polymer are much lower than those of steel. Nevertheless, the unconventional spatial shape of a 3D printed reinforcement can substitute for much of the lower mechanical performance of polymer. Flexural characteristics of a cement mortar prism specimen reinforced by hexagon spatial elements were tested and analyzed in this paper. The hexagonal geometric shape was chosen due to its high rigidness. It was proven that it is possible to efficiently reinforce concrete beams by spatial 3D printed polymer elements. Directions of needed research were pointed and discussed.


Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 347 ◽  
Author(s):  
Shib Banerjee ◽  
Stephen Burbine ◽  
Nischay Kodihalli Shivaprakash ◽  
Joey Mead

Currently, material extrusion 3D printing (ME3DP) based on fused deposition modeling (FDM) is considered a highly adaptable and efficient additive manufacturing technique to develop components with complex geometries using computer-aided design. While the 3D printing process for a number of thermoplastic materials using FDM technology has been well demonstrated, there still exists a significant challenge to develop new polymeric materials compatible with ME3DP. The present work reports the development of ME3DP compatible thermoplastic elastomeric (TPE) materials from polypropylene (PP) and styrene-(ethylene-butylene)-styrene (SEBS) block copolymers using a straightforward blending approach, which enables the creation of tailorable materials. Properties of the 3D printed TPEs were compared with traditional injection molded samples. The tensile strength and Young’s modulus of the 3D printed sample were lower than the injection molded samples. However, no significant differences could be found in the melt rheological properties at higher frequency ranges or in the dynamic mechanical behavior. The phase morphologies of the 3D printed and injection molded TPEs were correlated with their respective properties. Reinforcing carbon black was used to increase the mechanical performance of the 3D printed TPE, and the balancing of thermoplastic elastomeric and mechanical properties were achieved at a lower carbon black loading. The preferential location of carbon black in the blend phases was theoretically predicted from wetting parameters. This study was made in order to get an insight to the relationship between morphology and properties of the ME3DP compatible PP/SEBS blends.


2020 ◽  
Vol 55 (33) ◽  
pp. 16048-16057 ◽  
Author(s):  
Nashat Nawafleh ◽  
William Wright ◽  
Nader Dariavach ◽  
Emrah Celik

Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5264
Author(s):  
Bharat Yelamanchi ◽  
Eric MacDonald ◽  
Nancy G. Gonzalez-Canche ◽  
Jose G. Carrillo ◽  
Pedro Cortes

The production and mechanical properties of fiber metal laminates (FMLs) based on 3D printed composites have been investigated in this study. FMLs are structures constituting an alternating arrangement of metal and composite materials that are used in the aerospace sector due to their unique mechanical performance. 3D printing technology in FMLs could allow the production of structures with customized configuration and performance. A series of continuous carbon fiber reinforced composites were printed on a Markforged system and placed between layers of aluminum alloy to manufacture a novel breed of FMLs in this study. These laminates were subjected to tensile, low velocity and high velocity impact tests. The results show that the tensile strength of the FMLs falls between the strength of their constituent materials, while the low and high velocity impact performance of the FMLs is superior to those observed for the plain aluminum and the composite material. This mechanism is related to the energy absorption process displayed by the plastic deformation, and interfacial delamination within the laminates. The present work expects to provide an initial research platform for considering 3D printing in the manufacturing process of hybrid laminates.


Sign in / Sign up

Export Citation Format

Share Document