Assessment of materials, design parameters and some properties of 3D printing concrete mixtures; a state-of-the-art review

2022 ◽  
Vol 316 ◽  
pp. 125865
Author(s):  
Hatice Gizem Şahin ◽  
Ali Mardani-Aghabaglou
Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 125
Author(s):  
Martino Colonna ◽  
Benno Zingerle ◽  
Maria Federica Parisi ◽  
Claudio Gioia ◽  
Alessandro Speranzoni ◽  
...  

The optimization of sport equipment parts requires considerable time and high costs due to the high complexity of the development process. For this reason, we have developed a novel approach to decrease the cost and time for the optimization of the design, which consists of producing a first prototype by 3D printing, applying the forces that normally acts during the sport activity using a test bench, and then measuring the local deformations using 3D digital image correlation (DIC). The design parameters are then modified by topological optimization and then DIC is performed again on the new 3D-printed modified part. The DIC analysis of 3D-printed parts has shown a good agreement with that of the injection-molded ones. The deformation measured with DIC are also well correlated with those provided by finite element method (FEM) analysis, and therefore DIC analysis proves to be a powerful tool to validate FEM models.


2021 ◽  
Author(s):  
Oliver Sjögren ◽  
Carlos Xisto ◽  
Tomas Grönstedt

Abstract The aim of this study is to explore the possibility of matching a cycle performance model to public data on a state-of-the-art commercial aircraft engine (GEnx-1B). The study is focused on obtaining valuable information on figure of merits for the technology level of the low-pressure system and associated uncertainties. It is therefore directed more specifically towards the fan and low-pressure turbine efficiencies, the Mach number at the fan-face, the distribution of power between the core and the bypass stream as well as the fan pressure ratio. Available cycle performance data have been extracted from the engine emission databank provided by the International Civil Aviation Organization (ICAO), type certificate datasheets from the European Union Aviation Safety Agency (EASA) and the Federal Aviation Administration (FAA), as well as publicly available data from engine manufacturer. Uncertainties in the available source data are estimated and randomly sampled to generate inputs for a model matching procedure. The results show that fuel performance can be estimated with some degree of confidence. However, the study also indicates that a high degree of uncertainty is expected in the prediction of key low-pressure system performance metrics, when relying solely on publicly available data. This outcome highlights the importance of statistic-based methods as a support tool for the inverse design procedures. It also provides a better understanding on the limitations of conventional thermodynamic matching procedures, and the need to complement with methods that take into account conceptual design, cost and fuel burn.


Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4534 ◽  
Author(s):  
Elżbieta Bogdan ◽  
Piotr Michorczyk

This paper describes the process of additive manufacturing and a selection of three-dimensional (3D) printing methods which have applications in chemical synthesis, specifically for the production of monolithic catalysts. A review was conducted on reference literature for 3D printing applications in the field of catalysis. It was proven that 3D printing is a promising production method for catalysts.


2012 ◽  
Vol 20 (3) ◽  
pp. 453-472 ◽  
Author(s):  
Alexandre Devert ◽  
Thomas Weise ◽  
Ke Tang

This paper presents a comparative study of two indirect solution representations, a generative and an ontogenic one, on a set of well-known 2D truss design problems. The generative representation encodes the parameters of a trusses design as a mapping from a 2D space. The ontogenic representation encodes truss design parameters as a local truss transformation iterated several times, starting from a trivial initial truss. Both representations are tested with a naive evolution strategy based optimization scheme, as well as the state of the art HyperNEAT approach. We focus both on the best objective value obtained and the computational cost to reach a given level of optimality. The study shows that the two solution representations behave very differently. For experimental settings with equal complexity, with the same optimization scheme and settings, the generative representation provides results which are far from optimal, whereas the ontogenic representation delivers near-optimal solutions. The ontogenic representation is also much less computationally expensive than a direct representation until very close to the global optimum. The study questions the scalability of the generative representations, while the results for the ontogenic representation display much better scalability.


2004 ◽  
Vol 860 ◽  
Author(s):  
Gian N. Babini ◽  
Andrea Fedele ◽  
Luca Settineri

ABSTRACTThe great development of Solid Freeform Fabrication (SFF) techniques from their introduction into the market, more than 20 years ago, has fueled their diffusion in the mechanical sector to the point that they are today an indispensable component of the process of designing, engineering and producing a mechanical parts.At the same time, these techniques found application in different and even distant sectors, like biomedicine or architecture. This lead to the necessity of developing SFF processes suitable for materials different from those they were at the beginning thought for. Such techniques, taken from the original ones or entirely developed ex-novo, allowed for a surprising differentiation of the applications.The fabrication of ceramic parts by SFF techniques is a relatively new field which is widening the role of such materials in sectors not traditionally covered.The present paper reports a state of the art of the techniques that appear more effective for the production of ceramic goods, with representative or even functional properties.Further, some results of 3D Printing experiments of alumina parts will be presented.


2020 ◽  
Vol 18 (4) ◽  
pp. 371-384 ◽  
Author(s):  
Paul Nicholas ◽  
Gabriella Rossi ◽  
Ella Williams ◽  
Michael Bennett ◽  
Tim Schork

Robotic 3D printing applications are rapidly growing in architecture, where they enable the introduction of new materials and bespoke geometries. However, current approaches remain limited to printing on top of a flat build bed. This limits robotic 3D printing’s impact as a sustainable technology: opportunities to customize or enhance existing elements, or to utilize complex material behaviour are missed. This paper addresses the potentials of conformal 3D printing and presents a novel and robust workflow for printing onto unknown and arbitrarily shaped 3D substrates. The workflow combines dual-resolution Robotic Scanning, Neural Network prediction and printing of PETG plastic. This integrated approach offers the advantage of responding directly to unknown geometries through automated performance design customization. This paper firstly contextualizes the work within the current state of the art of conformal printing. We then describe our methodology and the design experiment we have used to test it. We lastly describe the key findings, potentials and limitations of the work, as well as the next steps in this research.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2115
Author(s):  
Meghan E. Lamm ◽  
Lu Wang ◽  
Vidya Kishore ◽  
Halil Tekinalp ◽  
Vlastimil Kunc ◽  
...  

Wood and lignocellulosic-based material components are explored in this review as functional additives and reinforcements in composites for extrusion-based additive manufacturing (AM) or 3D printing. The motivation for using these sustainable alternatives in 3D printing includes enhancing material properties of the resulting printed parts, while providing a green alternative to carbon or glass filled polymer matrices, all at reduced material costs. Previous review articles on this topic have focused only on introducing the use of natural fillers with material extrusion AM and discussion of their subsequent material properties. This review not only discusses the present state of materials extrusion AM using natural filler-based composites but will also fill in the knowledge gap regarding state-of-the-art applications of these materials. Emphasis will also be placed on addressing the challenges associated with 3D printing using these materials, including use with large-scale manufacturing, while providing insight to overcome these issues in the future.


Author(s):  
Cheng Zhu ◽  
Andrew J. Pascall ◽  
Nikola Dudukovic ◽  
Marcus A. Worsley ◽  
Joshua D. Kuntz ◽  
...  

In recent years, 3D printing has led to a disruptive manufacturing revolution that allows complex architected materials and structures to be created by directly joining sequential layers into designed 3D components. However, customized feedstocks for specific 3D printing techniques and applications are limited or nonexistent, which greatly impedes the production of desired structural or functional materials. Colloids, with their stable biphasic nature, have tremendous potential to satisfy the requirements of various 3D printing methods owing to their tunable electrical, optical, mechanical, and rheological properties. This enables materials delivery and assembly across the multiple length scales required for multifunctionality. Here, a state-of-the-art review on advanced colloidal processing strategies for 3D printing of organic, ceramic, metallic, and carbonaceous materials is provided. It is believed that the concomitant innovations in colloid design and 3D printing will provide numerous possibilities for the fabrication of new constructs unobtainable using traditional methods, which will significantly broaden their applications.


Sign in / Sign up

Export Citation Format

Share Document